S Y MPOSI UM
20 October 2005

N
Tt AN
N it
%,

N
Nt

IPR on software:
the road ahead

Centrum voor Wiskunde en Informati_ca
CWI in Bedrijf

Kruislaan 413, 1098 SJ, Amsterdam
www.cwi.nl/CiB

Symposium IPR on software: the road ahead

20 October 2005, 13.30 — 16.30h

After the recent rejection of the proposed directive on computer-implemented inventions by the
European Parliament, the political turmoil and emotions surrounding the subject are cooling down.
At the same time, the fundamental questions about intellectual property rights on software remain
unanswered. This is therefore the right moment to resume the debate about the fundamentals of the
patenting system and to explore the desirability and possibility to establish intellectual property rights
(IPR) on software and to consider new systems to do so.

This symposium will contribute to identifying new ways to look at this old problem.

PROGRAMME

Chair: Maria Henneman

13.00 Arrival Research demonstrations
13.30 Opening Jan Karel Lenstra

13.35 Introduction Paul Klint

13.45 Reinventing intellectual property protection for software Robert Plotkin

1425 Computer-implemented inventions: the EPO legal framework and practice
Yannis Skulikaris

15.00 Tea break Research demonstrations

1520 A patented method to fix the patent system Roland Orre

15.40 Discussion Jan Bergstra, Lucie Guibault,
Roland Orre, Robert Plotkin,

Yannis Skulikaris

16.30 Closure Jan Karel Lenstra
Drinks Research demonstrations

IPR on software: the road ahead — 20 October 2005

ABSTRACTS

Paul Klint:
IPR on software: the road ahead

After the recent rejection of the proposed directive on computer-implemented inventions by
the European parliament, the political turmoil and emotions surrounding the subject of software
patents are cooling down. At the same time, the fundamental questions about intellectual property
rights (IPR) on software remain unanswered. This is therefore the right moment to resume the
debate about the fundamentals of the patenting system and to explore the desirability and
possibility to establish IPR on software and to consider new systems todo so. In this half-day
symposium, the following questions will be addressed by the invited speakers and panellists:

Is there anything about software that makes it ‘special’and justifies a special treatment under
regimes of IPR protection?

Can we learn from the role of IPR in other disciplines like, for instance, the life sciences?

Patents are about the protection of inventions; what is the character of inventions in the software
field?

Should all software be treated the same or should we distinguish different categories (e.g.,
embedded software versus non-embedded software) for IPR protection?

S-called “trivial patents are one of the major stumbling blocks of the current patenting system: how
can they be avoided?

How can we build up knowledge about “prior art’ to protect against such patents?

Are there alternatives for the current IR protection mechanisms(copyright, patent) thatcould work
better for software?

How should we look at the role of IPR in relation to new players such as China and India?

This symposium aims at contributing to identifying new ways to look at this old problem.

Robert Plotkin:
Reinventing intellectual property protection for software

The debate over whether software is appropriate subject matter for patent protection
continues to rage, without any clear resolution in sight. The European Patent Convention attempts
to draw this distinction by excluding software programs from patent protection unless they have a
‘technical effect’. U.S. law requires that a software program have a ‘practical utility’ to constitute
patentable subject matter. Both such requirements fail to provide clear guidance in hard cases
because they merely beg the question of what constitutes a ‘technical’ effect or a ‘practical’ utility.
I recommend that software patent claims instead be evaluated in terms of three kinds of utility for
effects: 1) physical utility, which refers to the direct physical effects of an invention, such as the
movement of gears and levers in a mechanical cash register; 2) logical utility, which refers to the
information processing tasks performed by an invention, such as the mathematical operations
performed by a cash register; and 3) application utility, which refers to the usefulness of the
invention to the end user, such as the increased accuracy and reduced calculation time made
possible by a cash register. In particular, the physical utility requirement would require the
applicant to demonstrate that the claimed software is susceptible of embodiment in a tangible form,

the logical utility requirement would require the claimed software to be defined clearly in terms of
the information processing steps it performs, and the application utility requirement would require
the applicant to provide an industrial application of the claimed software. Furthermore, patent
examiners and judges should be required to evaluate software patent claims expressly in terms of
each kind of utility. This would clarify the basis for the decision in each case and avoid the now-
common conflation of one kind of utility with another, thereby focusing any dispute over subject
matter patentability on the particular kind of utility whose satisfaction is in question.

Yannis Skulikaris:
Computer-Implemented Inventions: the EPO legal framework and practice

There is a lot of controversy regarding Computer-Implemented Inventions (CII), and there
are good reasons for that: the special nature of software, the exclusion of patentability of computer
programs as such in the European Patent Convention, the different Intellectual Property systems on
the two sides of the Atlantic, the effort to harmonize patent law and practice within Europe etc.

From an economy perspective, the Open Source model claims to be inherently incompatible
with CII patents. And SME's express fears that they might be crushed under the IP rights of the IT
giants. In an environment where patent rights have to be balanced with the requirement of free
competition, the European Patent Office operates in a very special way: being exclusively an
executive organ, the EPO follows the European Patent Convention and the case law, but still
detects the signals coming from the users and those indirectly affected by the patent system.

Roland Orre:
A patented method to fix the patent system

The patent system has flaws. Flaws can be abused or they can be used against the system to
improve the system.

The crazy idea to patent a method which could fix the flaws in the patent system occurred as a
thought experiment inspired by a debate about software patents early 2000. The idea was to
illustrate how ridiculous the concept of patents on business methods and software was.

Later I realised, that it is actually possible to implement this idea, and also, that such a
patent, when thoroughly worked out as a well founded business idea, could have very beneficial
effects on the society and the economy.

The patent is an artificial intelligence method applied to business, with potential to
accelerate the technological evolution, counteract the ‘Adam Smith’ effect, to prepare the society
and human mind for nano technology, and push the patent system away from trivial patents and
software patents towards real innovations.

However, the somewhat controversial effect is that it implies that patents on software and
business method patents are not completely evil, as the beneficial effects of this business method
would certainly be hard to achieve, without these flaws of the system

ABOUT THE SPEAKERS

Jan Bergstra is professor of programming and software engineering at the Universiteit van
Amsterdam and professor of applied logic at Utrecht University, Department of Philosophy. Earlier
he worked at Leiden University, CWI, and Philips Research. Since 2001 he is director of the
Educational Institute of Information Sciences at Universiteit van Amsterdam.

Jan Bergstra’s research has always been oriented towards issues of computation and computability.
After having been chairman of the organizing committee of the first Holland Open Software
Conference (HOSC 2005, Amsterdam) Jan Bergstra got unexpectedly involved in research on
software patents together with Paul Klint. This work is now being continued in the form of a
consultancy project for the European Commission.

Lucie Guibault is assistant professor of copyright and intellectual property law at the Institute for
Information Law (IVIR) of the Universiteit van Amsterdam. Born and raised in Canada, she studied
law at the Université de Montréal (LL.B. 1988 and LL.M. 1995) and recently received her
doctorate from the Universiteit van Amsterdam where she defended her thesis on Copyright
Limitations and Contracts: An Analysis of the Contractual Overridability of Limitations on
Copyright. She joined the Institute for Information Law in 1997.

Dr. Guibault is specialized in international and comparative copyright and intellectual property law;
she is in charge of the coordination of the International Copyright Law Summer Course, given by
IVIR staff at the Amsterdam Law School.

Paul Klint is head of the software engineering department at Centrum voor Wiskunde en
Informatica (CWTI), - the Dutch national research centre for computer science and mathematics,
professor of computer science at the University of Amsterdam, and visiting professor at the
University of London (Royal Halloway). He is also president of the European Association for
Programming Languages and Systems (EAPLS) and co-founder of the Software Improvement
Group (SIG), a CWI spinoff company. He holds an MSc in Mathematics from the University of
Amsterdam (1973) and a PhD in Computer Science from the Technische Universiteit Eindhoven
(1982). He is currently directing the one-year Master’s Programme in Software Engineering at the
Universiteit van Amsterdam. His research interests include generic language technology, domain-
specific languages, component technology, software renovation, technology transfer and
intellectual property rights. He has consulted for companies and governments worldwide.

Jan Karel Lenstra is General Director of Centrum voor Wiskunde en Informatica (CWI), the
Dutch national institute for research in computer science and mathematics. He has been on the
research staff of CWI and on the faculty of the Technische Universiteit Eindhoven — where he
served as Dean of Mathematics & Computer Science — and of the Georgia Institute of Technology,
Atlanta. His research interests are in the combinatorial optimization, in particular sequencing and
scheduling, routing, complexity, approximation and local search.

Roland Orre was trained in Engineering Physics and received a doctorate in computer science at
the Royal Institute of Technology (Sweden); is involved in collaborative research and development
with WHO, developing early warning signaling methods, as well as unsupervised pattern
recognition and duplicate report detection. Founded company NeuroLogic Sweden AB and is CEO.
Patents: US+PCT patent application — applied, (final appl. 10™ March 2005, prio 10™ March 2004)
for a patent on a data mining method which turns a search engine into a (semi)automatic
manufacturing system.

EPO patent — A method of extracting a logical description of a sampled analog signal.

Ref: http//12.espacenet.com/espacenet/viewer?PN=EP0520400

Robert Plotkin, Esq. is an attorney specializing in intellectual property protection for computer
hardware and software. He has an extensive background in computer science shared by few other
attorneys. He began programming as a hobby at the age of ten and has devoted himself to the study
of computer science and the development of computer technologies ever since. He has a Bachelor’s
degree in Computer Science and the Engineering from the Massachusetts Institute of Technology
and continually updates his knowledge of the latest developments in the field of computer science
both through his client work and through his memberships in professional associations, such as the
Association for Computing Machinery (ACM) and the Institute for Electrical and Electronics
Engineers (IEEE).

Attorney Plotkin is also a lecturer at the Boston University School of Law, where he teaches an
advanced course titled ¢ Software and the law’. He has written and spoken extensively on topics
including software patent protection, First Amendment protection for computer source code,
trademark and domain name disputes, patent licensing, electronic court filing, and electronic
privacy in the work place.

Yannis Skulikaris has a background in Physics, Computer Science and Law. He has worked for
eight years in the European IT sector, first as a programmer in the Greek public administration,
then as an office automation consultant with the British Petroleum in Hamburg. He has also worked
as a freelance IT consultant. He has been with the European Patent Office since 1989, first as a
patent examiner and then as a manager. He is currently heading a directorate of 30 patent
examiners working in the field of computer-implemented inventions (CII) at the EPO branch in The
Hague. He has been deeply involved as a technical expert in the recent process concerning the CII
directive.

Maria Henneman, well known as a broadcasting journalist, is a media/communications consultant.

Software Patentability and Practical Utility:
What’s the Use?

© 2004 by Robert Plotkin, Esq.
rplotkin@rplotkin.com
Robert Plotkin, P.C.
Concord, MA USA

This is a preprint of an article whose final and definitive form has been published in the International Review of Law
Computers and Technology. 2005 Copyright Taylor & Francis; International Review of Law Computers and Technology, is
available online at http://taylorandfrancis.metapress.com/link.asp?id651301 m2x162pl.

Abstract

The debate over whether software is appropriate subject matter for patent protection continues to rage,
without any clear resolution in sight. The European Patent Convention attempts to draw this distinction
by excluding software programs from patent protection unless they have a “technical effect.” U.S. law
requires that a software program have a “practical utility” to constitute patentable subject matter. Both
such requirements fail to provide clear guidance in hard cases because they merely beg the question of
what constitutes a “technical” effect or a “practical” utility. I recommend that software patent claims
instead be evaluated in terms of three kinds of utility or effects: (1) physical utility, which refers to the
direct physical effects of an invention, such as the movement of gears and levers in a mechanical cash
register; (2) logical utility, which refers to the information processing tasks performed by an invention,
such as the mathematical operations performed by a cash register; and (3) application utility, which
refers to the usefulness of the invention to the end user, such as the increased accuracy and reduced
calculation time made possible by a cash register. In particular, the physical utility requirement would
require the applicant to demonstrate that the claimed software is susceptible of embodiment in a tangible
form, the logical utility requirement would require the claimed software to be defined clearly in terms of
the information processing steps it performs, and the application utility requirement would require the
applicant to provide an industrial application of the claimed software. Furthermore, patent examiners
and judges should be required to evaluate software patent claims expressly in terms of each kind of
utility. This would clarify the basis for the decision in each case and avoid the now-common conflation
of one kind of utility with another, thereby focusing any dispute over subject matter patentability on the
particular kind of utility whose satisfaction is in question.

I. Framing the Problem of Software Patentability

The debate over software patentability continues to rage, without any clear resolution in sight, after at
Jeast four decades of controversy.' The debate over software “patentability” has tended to focus, quite
reasonably, on the threshold “subject matter patentability” requirement,2 which specifies the kinds of
subject matter that are susceptible to patent protection. The patentable subject matter requirement is an
attemnpt to provide a mechanism for filtering out claimed subject matter which does not fall within the
“useful” arts (in the U.S.) or the “industrial” arts (in Europe). Failure to satisfy the patentable subject

' The debate dates back at least to 1965, when U.S. President Johnson commissioned a comprehensive study of the United
States patent system. The Commission explored a wide range of pressing issues facing the patent system and recommended,
among other things, that “no patents on . . . computer programs” be issued. 1996 Report of the President’s Comm’n on the
Patent Sys. 1.

2n the U.S., patentable subject matter is defined in 35 U.S.C. § 101. In the European patent system, patentable subject
matter is defined in Article 52 of the European Patent Convention.

1

matter requirement is fatal to the ultimate determination of patentability more generally. A poem, for
example, is not patentable subject matter and therefore not patentable, no matter how novel it may be
and no matter how significant an advance it represents over the current state of the literary art.

The U.S. patent statute adopts a categorical approach to patentable subject matter, according to which
five categories of subject matter —processes, machines, articles of manufacture, and compositions of
matter —are susceptible to patent protection.” The European Patent Convention takes an approach which
is at once more expansive and more limiting, by establishing “industrial application” rather than a list of
specified categories as the fundamental test for patentable subject matter, while also providing a list of
expressly excluded categories.® Although this express exclusion includes computer programs, computer
programs are only excluded “as such.”

In most cases, the question, “is software patentable?,” is best interpreted as the question, “is software
patentable subject matter?” Although other requirements, such as the novelty® and inventive
step/nonobviousness7 requirements, have also engendered controversy in their application to software,
the crux of the debate has been and continues to be whether computer programs, as a class, should even
be susceptible to patent protection in the first instance.®

II. The Failure of Existing Standards |

The current state of the law of software subject matter patentability, both in the U.S. and Europe, leaves
much to be desired, particularly considering the volume of ink that has been spilled in consideration of
the topic. In particular, although some consensus has been reached that software can qualify as
patentable subject matter under certain conditions, we lack clear and objective definitions of such
conditions, and therefore lack the means to determine whether any particular software patent claim
defines patentable subject matter. For example, although a computer program that merely performs a
mathematical calculation lacking any practical application does not qualify as patentable subject matter,’
while software that controls an automobile-manufacturing robot likely qualifies as patentable subject
matter, even such conclusions are less certain than is desirable and leave a substantial grey area in-
between.

The European Patent Office (EPO) Board of Appeal and the EPO Guidelines for Examination
distinguish between patentable and non-patentable subject matter in the context of software based on
whether the claimed subject matter has a “technical character” or “technical effect.”'® The Court of
Appeals for the Federal Circuit in the U.S. has effectively discarded the categorical approach of the U.S.
patent statute in favor of a “practical utility” requirement,'' according to which claimed subject matter
must achieve a “useful, concrete, and tangible result” to qualify as patentable subject matter."?

These reinterpretations of the patentable subject matter requirement are steps in the right direction. For
example, both the “technical effect” and the “practical utility” requirement provide a basis for excluding
indisputably non-patentable subject matter, such as abstract ideas, laws of nature, and natural
phenomena."> Both the European and U.S. approaches, however, fail to provide clear guidance in hard

*35U.8.C. § 101.

* Art. 52(2) Eur. Pat. Convention (Oct. 5, 1973).

> Id. 52(3).

®1d. 54(1); 35 U.S.C. § 102.

7 Id. 56,35 U.S.C. § 103.

8 For an overview of the history of the debate over software subject matier patentability, see, e.g., GREGORY A. STOBBS,

SOFTWARE PATENTS 1-46 (2d ed. 2000).

? See, e.g., Diamond v. Diehr, 450 U.S. 175 (1981).

1% Guidelines for Examination in the EPO § C-1V.2 (2001).

:; State Street Bank & Trust Co. v. Signature Financial Group, Inc., 149 F.3d 1368, 1375 (Fed. Cir. 1998).
Id.

13 Diamond v. Diehr, 450 U.S. at 185.

cases because they merely beg the question of what constitutes a “technical” effect in contrast to a “non-
technical” effect, or a “practical” utility in contrast to a “non-practical” utility.

Every computer program executing on a computer produces a “technical” effect in the sense that
execution of the program causes the computer to store, modify, and transmit electrical signals internally.
If the mere manipulation of electrical signals by a computer as an inherent part of executing a computer
program were sufficient to confer subject matter patentability on the program, then every computer
program would satisfy the “technical effect” standard. Assuming that at least some computer programs,
such as those which merely calculate the results of a mathematical formula having no practical
application, should not qualify as patentable subject matter, the “technical effect” standard would fail as
a useful test for subject matter patentability if “technical effect” merely required the performance of
physical activity by a machine."*

One might be tempted to fix this problem of overinclusiveness by requiring a “technical effect” beyond
the internal manipulation of electrical signals that is inherent to the execution of any computer
program."” Such a requirement of “technical effect plus,” while solving the overinclusiveness problem,
would swing too far in the opposite direction by excluding from subject matter patentability a variety of
worthy software.

Consider, for example, a hypothetical case involving two black boxes which are identical in external
appearance and behavior. Each box has an input slot into which an original x-ray print may be fed.
After a short delay, each box produces a highly clarified x-ray print in which any tumors are highlighted.
The clarified x-rays produced by both boxes are indistinguishable from each other. Assume that the
quality of x-ray clarification produced by both boxes is better than that which may be obtained using any
preexisting x-ray processing device.

Upon opening both boxes and peering inside, you find in the first box a complex jumble of circuitry and
are informed that such circuitry was custom-designed by an electrical engineer. In the other box you
find a small laptop computer running x-ray image processing software written by a computer
programmer. The circuitry in the first box and the software in the second box implement precisely the
same x-ray clarification algorithm.

Is there any basis for deeming the circuit-implemented x-ray clarification device to constitute patentable
subject matter, but not the software-implemented clarification device? I assert not; the subject matter
patentability of the circuit-based and software-based implementations must stand or fall together. One
may consider this thought experiment to be akin to a “Turing test” for patentable subject matter, in the
sense that the subject matter patentability determination must be made based on the externally-
observable behavior of the device in question, rather than on any knowledge of whether the device is
implemented in hardware or in software.

There should be no question that the circuit-implemented x-ray clarification device in the hypothetical
example above would qualify as patentable subject matter under any version of the “technical effect”
test. Therefore, the software-implemented device must also qualify as patentable subject matter. Under
a strict interpretation of the “technical effect plus” requirement, however, the software-implemented
device would not qualify as statutory subject matter because its execution on the computer merely
involves the manipulation of electrical signals inherent to the execution of any computer program. Any
attempt to loosen the “technical effect plus” requirement, such as by allowing the production of the
clarified x-ray print to qualify as the “plus,” would create an exception that would swallow the rule.
Any computer program, including those which do not have any practical/industrial application and
which therefore should not qualify as patentable subject matter, may be modified to produce output
external to the computer. The “technical effect plus” standard, therefore, whether construed strictly or

14 As described in more detail below in Section 1L A.1, this naive “physicality” test for statutory subject matter has been

adopted in a variety of European and U.S. cases.

15 For an example of such an approach, see, e.g., Koch & Sterzel/X-ray Apparatus (T26/86, Eur. Pat. Office J. 1-2 1988).
3

liberally, fails to provide a useful basis for distinguishing between patentable subject matter and non-
patentable subject matter.

The “practical utility” requirement suffers from similar shortcomings. If “practical” equates to
“physical,” then all software executing on a computer has “practical” utility in the sense that all software
creates physical effects within the computer in the form of electrical signal manipulation. For example,
under such a test, digital music would (incorrectly) qualify as patentable subject matter. Therefore,
“practical utility” must require something beyond mere internal “physicality.” Requiring some physical
effect external to the computer, however, would fail to provide a useful standard for the reasons
described above with respect to the “technical effect plus” standard.

The Court of Appeals for the Federal Circuit (CAFC), perhaps recognizing the limitations of a naive
physicality test for subject matter patentability, looked beyond mere physicality to evaluate the practical
utility of the claimed software in State Street Bank & Trust Co. v. Signature F inancial Group, Inc.'® In
particular, the CAFC held that:

the transformation of data, representing discrete dollar amounts, by a machine through a
series of mathematical calculations into a final share price, constitutes a practical
application of a mathematical algorithm, formula, or calculation, because it produces “a
useful, concrete and tangible result”—a final share price momentarily fixed for recording
and reporting purposes and even accepted and relied upon by regulatory authorities and
in subsequent trades."’

This passage, although much-criticized for its use in eliminating the business method exception to
subject matter patentability, is commendable for its ability to look beyond the physical implementation
details of the financial software in question to the “real-world” utility of the software, whatever one may
think of the conclusion drawn. An analysis which takes into account the real-world benefits that a
claimed program provides to its users represents an advance over an approach which focuses solely on
whether the claimed program generates electrical signals within a computer.

Unfortunately, the CAFC was unable to sustain its progress, however incremental, for more than one
case. In AT&T Corp. v. Excel Communications, Inc.,'® the CAFC eliminated physicality as a
requirement for subject matter patentability.19 Elimination of any physicality requirement is inconsistent
with both precedent”® and the fundamental patent policy of only protecting innovations in the
useful/industrial arts.”! For example, the elimination of the physicality requirement leaves no clear basis
for excluding from subject-matter patentability either abstract ideas? or a variety of works falling solely
within the liberal arts (such as purely human-performed innovations in law, politics, and business).

In summary, recent jurisprudence in both Europe and the U.S. has reframed the question of software
subject matter patentability in terms of “technical effect” and “practical utility.” These standards,
however, have significant practical and theoretical limitations. As a result, a coherent standard still is
lacking for determining whether a claimed computer program constitutes patentable subject matter.

III. Three Utilities for the Price of One

Analysis of opinions in software patent cases reveals that patent examiners and judges actually evaluate
software patent claims in terms of three kinds of interrelated utility: physical utility, logical utility, and
application utility. “Physical utility” refers to the direct physical effects of an invention, such as the

' 149 F.3d 1368 (Fed. Cir. 1998).

' Id. at 1373.

18 172 F.3d 1352 (Fed. Cir. 1999).

'° Id. at 1358-60.

0 See, e.g., Cochrane v. Deener, 94 U.S. 780, 788 (1876) (holding that “[a] process is . . . an act, or a series of acts,
performed upon the subject-matter to be transformed and reduced to a different state or thing”).

21 JS. CONST. art. 1, § 8, cl. 8; Art. 52(1) Eur. Pat. Convention (Oct. 5, 1973).

22 See supran.13.

4

movement of gears and levers in a mechanical cash register. “Logical utility” refers to the information
processing tasks performed by an invention, such as the mathematical operations performed by a cash
register. “Application utility” refers to the “real-world” function performed by the invention from the
perspective of the end user, such as the calculation by a mechanical cash register of the total cost of a
bag of groceries.

Although patent examiners and judges already consider these three kinds of utility, they tend to do so
implicitly rather than explicitly, without explaining the basis (if any) for evaluating particular claims in
terms of one kind of utility rather than another, and with a lack of consistency from case to case. In the
following discussion I provide examples? of such confusion and explain how it leads to inconsistent and
unprincipled results.

A. Case Studies

1. Physical Utility

In some cases, the subject matter patentability determination has hinged on the “physicality” of the
claimed subject matter, e.g., whether a claimed process or product is implemented in a physical form
and/or acts on physical material. In the U.S., the seminal case of Cochrane v. Deener established a
physicality requirement for processes in the form of the proposition that a process only qualifies as
patentable subject matter if it transforms something “into a different state or thing.”24

In In re Sherwood,? the Court of Claims and Patent Appeals (CCPA) held claims directed to techniques
for seismic prospecting to constitute patentable subject mater on the grounds that “seismic traces [recited
in the claims] are electrical signals from geophones, i.e., physical apparitions, or particular patterns of
magnetization on magnetic tape, i.e., the pattern of the magnetization being a physical manifestation, or
a physical line on a paper chart.” In Inre Walter,?® the CCPA distinguished between inventions in
which “the end product . . . is a pure number,” and which therefore are non-patentable subject matter,
and inventions which “produce{] a physical thing,” which may be patentable subject matter even if the
physical thing is represented in numerical form. In Diamond v. Diehr,”’ the U.S. Supreme Court held a
process to constitute patentable subject matter because the claims “involve[d] the transformation of . . .
raw, uncured synthetic rubber, into a different state or thing.” In /n re Pardo,”® the CCPA held that a
process claim directed to controlling the internal operations of a programmed computer constituted
statutory subject matter because the claim was directed to “executing programs in a computer,” which
the court viewed as indistinct from a strictly mechanical adding machine. In In re Grams,” the CAFC
held that an algorithm that failed to perform “physical steps” did not qualify as statutory subject matter.

In State Street Bank & Trust Co. v. Signature Financial Group, Inc. % the CAFC held that “the
transformation of data, representing discrete dollar amounts, by a machine through a series of
mathematical calculations into a final share price,” qualified as statutory subject matter because it
produced “a useful, concrete and tangible result,” even though the transformed data did not represent
physical activity or objects. Although the court in Stafe Street did not expressly refer to the physical
transformations performed by the claimed machine, the phrase “transformation of data” must refer to a
transformation of physical electrical signals because the machine that performed the transformation in

2 The following discussion does not provide an exhaustive set of case studies, but rather provides illustrative examples.
2494 U.S. 780, 788 (1876).

3 613 F.2d. 809, 819 (C.C.P.A. 1980).

26 618 F.2d 758, 767-68 (C.C.P.A. 1980).

27450 U.S. 175, 185 (1981).

2 684 F.2d 912, 916 (C.C.P.A. 1982).

9 838 F.2d 835, 840 (Fed. Cir 1989).

3 149 F.3d 1368, 1373 (Fed. Cir. 1998).

State Street was a programmed digital electronic computer.’' The court’s holding may therefore be
interpreted, in its best light, to stand for the proposition that a machine which performs a physical
transformation (e.g., of electrical signals from one form into another) qualifies as statutory subject
matter if the result of the transformation is useful, concrete, and tangible (i.e., physical).

In Vicom/Computer-Related Invention,*” the Board of Appeal of the European Patent Office held claims
directed to a process and product for digital image processing to satisfy the patentable subject matter
requirement, reasoning that “if a mathematical method is used in a technical process, that process is
carried out on a physical entity (which may be a material object but equally an image stored as an
electrical signal) by some technical means implementing the method and provides as its result a certain
change in that entity.”** In IBM/Data Processor Network,** claims related to the coordination and
control of the internal communications between programs and data files stored in different computers
connected as nodes in a telecommunications network were held to satisfy the patentable subject matter
requirement because the invention was concerned with the internal workings of computer processors.

In summary, in a variety of cases, physical utility has been a basis, and in some cases the sole basis, for
granting or denying subject matter patentability. In many such cases, the logical or application utility of
the claimed subject matter has been at most a secondary consideration.

2. Logical Utility

Other cases have focused primarily on the logical utility of the claimed software, i.e., on the algorithm
or other information processing steps recited in the claim, independently of the physical instantiation of
the program (physical utility) or its higher-level real-world use (application utility).

As mentioned above, in AT&T Corp. v. Excel Communications, Inc. % the CAFC eliminated physicality
entirely as a requirement for subject matter patentability,36 stating that “a mathematical algorithm may
be an integral part of patentable subject matter such as a machine or process if the claimed invention as a
whole is applied in a ‘useful’ manner.”’ By focusing not on the physical implementation of the claimed
method but rather on the manner in which it processed data, the CAFC in effect evaluated the claimed
method at least in part based on its logical utility.

In IBM/Document Abstracting and Retrieving,”® the EPO Board of Appeal rejected a claim directed to
abstracting a document, storing the abstract, and retrieving it in response to a query, on the ground that
the electrical signals generated when implementing the claim do not represent a physical thing, but
rather represent part of “the information content of a document, which could be of any nature.”® By
evaluating the claim based on the information represented by the process, the Board of Appeal in effect
evaluated the claim based on its logical utility.

The opinions in some cases have been at best unclear about whether satisfaction of the patentable
subject matter requirement hinges on physical utility, logical utility, or some combination of both. This
confusion most commonly manifests itself in lack of clarity about whether the patentable subject matter
requirement requires a claimed product or process to actually transform physical material into a different
state or thing, or whether it is sufficient that the product or process in question manipulate data
representing physical material. The former would correspond to the “physical utility” requirement

31 Id

322 Eur. Pat. Office Rep. 74 (1987).

B 1d at79.

34 T6/83, Eur. Pat. Office J. 1-2 (1990).

35 172 F.3d 1352 (Fed. Cir. 1999).

3 14 at 1358-60.

3 1d. at 1357.

3% T115/85, Eur. Pat. Office J. 1-2 (1990).
* Id. at para. 13.

described herein, while the latter would correspond most closely to the “logical utility” requirement, due
to its focus on the information processing steps performed by the claimed product or process.

For example, in In re Taner," the CCPA held that claimed processes which both performed and
simulated physical activity satisfied the patentable subject matter requirement, without distinguishing
between these two senses of physicality or explaining the relevance of either to the subject matter
patentability determination. In In re Abele,*! the CCPA based its patentable subject matter
determinations on whether the data used by the claimed processes represented physical entities. InIn re
Schrader,*? the CAFC held the disputed process claims not to be directed to statutory subject matter
because they “do not reflect any transformation or conversion of subject matter representative of or
constituting physical activity or objects.” In this passage, it is not clear whether the “physicality”
requirement requires a claimed process to be implemented in (“constitute”) physical activity or objects,
or merely to perform operations that are “representative of” physical activity or objects.

3. Application Utility

Finally, in certain cases, the primary focus has been on the application, or “real-world,” utility of the
claimed software, independently of whether the software effects physical transformations or performs
particular information-processing steps. For example, the CAFC relied on application utility in State
Street when it found the disputed claim to satisfy the patentable subject matter requirement because the
claimed system produced “a final share price momentarily fixed for recording and reporting purposes
and even accepted and relied upon by regulatory authorities and in subsequent trades” (emphasis
added).* Such reasoning focuses on the benefits provided by the invention both to its direct users and to
indirect beneficiaries (e.g., regulatory authorities), regardless of the particular physical form in which
the invention is instantiated or the particular information processing steps performed by the invention.

In IBM/Semantically Related Expressions,* a claim to a text processing system for automatically
generating semantically-related expressions was rejected on the ground that the system belonged to the
field of linguistics.*® According to such an approach, whether a particular invention qualifies as
patentable subject matter depends on whether the field of the invention falls within the industrial arts or
the liberal arts, again regardless of the particular physical form in which the invention is instantiated or
the particular information processing steps performed by the invention.

B. Recommendation: Require All Three Kinds of Utility

The case studies provided above demonstrate that although patent claims routinely are evaluated in
terms of physical, logical, and application utility, these three different kinds of utility have not expressly
been recognized as such. Rather, patent examiners and judges appear to conflate the different kinds of
utility with each other and to select different kinds of utility arbitrarily as the basis for the subject-matter
patentability determination from case to case. As a result, no coherent rules have emerged for
evaluating software patent claims in terms of physical, logical, and application utility.

“0 681 F.2d 787,790 (C.C.P.A. 1982).

41684 F.2d 902 (C.C.P.A. 1982).

4222 F.3d 290, 294 (Fed. Cir. 1994).

4 Arrhythmia Research Technology v. Corazonix Corp., 958 F.2d 1053 (Fed. Cir. 1992) is another example of a case which
repeatedly conflates the two senses of “physicality” noted herein. For further discussion of confusing surrounding these two
senses of “physicality,” see Robert Plotkin, Computer Programming and the Automation of Invention: A Case for Software
Patent Reform, 2003 UCLA J.L. & Tech. 7(2003), § LIL.D.5.

* Id. at 1373.

45 T52/85 Eur. Pat. Office J. R-8, 454 (1989).

 Id. at 458.

I recommend that software patent claims be required to satisfy all three utility requirements. The burden
should be on the software patent applicant to demonstrate that the claimed invention has all three kinds
of utility.

In particular, the physical utility requirement should require the applicant to demonstrate that the
claimed software is susceptible of embodiment in a tangible form. In effect, this requirement would
serve the same purpose as the enablement requirement: 7 to ensure that the applicant has taught the
public to make and use the claimed invention. The physical utility requirement, therefore, would simply
require that the patent disclosure enable one of ordinary skill in the art to implement the claimed
program on a computer.® The physical utility requirement would, therefore, impose a physicality
requirement that would provide an initial layer of protection against granting patent protection to
claimed subject matter falling outside the technological and/or industrial arts.

The logical utility requirement would require software patent claims to clearly and particularly define
the information processing steps performed by the claimed software. Existing rules of claim
construction could be adapted to ensure that claims drafted too broadly would either not qualify as
statutory subject matter or be interpreted narrowly.49 Software patent claims which merely claimed the
result achieved by a software program, for example, would not satisfy the logical utility requirement.
Such a requirement would both help to ensure that the patentee has put the public on notice of what is
claimed and to limit the scope of the claims to the scope of enablement.

Finally, the application utility requirement would require the patent applicant to disclose a specific,
substantial, and credible technological (in the U.S.) or industrial (in Europe) application of the claimed
software.’® This requirement, therefore, would focus on the end use, or “real-world” utility, of the
claimed software. A claim to a computer program for calculating the results of a novel and nonobvious
mathematical formula, for example, would satisfy the physical utility requirement (assuming that the
patent specification adequately described how to implement the program) and the logical utility
requirement (assuming that the patent specification and claims defined with sufficient clarity and
specificity the steps required to evaluate the formula), but not the application utility requirement absent
recitation of a specific, substantial, and credible application of the formula. The application utility
requirement would thereby provide an additional layer of protection against granting patent protection to
developments falling outside the technological/industrial arts.

Patent examiners and judges should be required to evaluate software patent claims expressly in terms of
each kind of utility when crafting their opinions. This would clarify the basis for the decision in each
case and avoid the above-described and now-common conflation of one kind of utility with another,
thereby focusing any dispute over subject matter patentability on the particular kind of utility whose
satisfaction is in question. Clarifying the basis for subject-matter patentability determinations would
both reduce the degree to which the applicant and examiner argue past each other and clarify issues for
appeal.

Another benefit of the approach proposed herein is that the three recommended utilities are not selected
arbitrarily, but rather represent points on a continuum ranging from low-level physical activity at one
end to high-level social function at the other end.’! Although utilities at additional and/or alternative

4135U.S.C. § 1129 1; Art. 83 Eur. Pat. Convention (Oct. 5, 1973).

8 Note, however, that a disclosure of a computer program may be enabling without describing the program in physical terms.
See Plotkin, § 111.D.

“ For a more detailed proposal for such modified rules of claim construction, see Plotkin § V.C.

5% The requirements of specific, substantial, and credible utility are drawn from the United States Patent and Trademark
Office Utility Examination Guidelines, 66 Fed. Reg. 1092 (2001), and represent a reasonable attempt to provide standards for
evaluating whether an invention has a “real-world” utility.

5! Physical utility arguably takes the “external perspective,” while logical utility and application utility arguably take the
“internal perspective” described in Orin S. Kerr, “The Problem of Perspective in Internet Law,” 91 Georgetown Law Journal
357 (2003).

8

points on the spectrum could be selected,” the three utilities described herein closely reflect the utilities
analyzed in actual cases®® and serve as good exemplars for explaining operation of the theory proposed
herein.

IV. Conclusions

The pragmatic solution proffered herein, while clarifying the analysis of utility in particular cases and
providing some additional objective bases for substantive evaluation of the three kinds of utility, still
begs the ultimate question: which kinds of utility satisfy the newly-created “application utility”
requirement? For example, assuming that a patent claim to a software-implemented business method
satisfies the physical and logical utility requirements, does the “business method” aspect of the software
satisfy the “application utility” requirement? The approach outlined herein does not provide an answer
to this ultimate question, although it does help to make clear that this is in fact the question whose
answer is in dispute, rather than some other question about whether, for example, the claimed software
is capable of being instantiated in a physical form.

One reason that such question—begging is so difficult, if not impossible, to avoid in this field of inquiry is
that the meaning of “technology™" is ambiguous, dynamic, and value-laden.”® Frederick Ferré, for
example, has defined “technology” as the “practical implementations of intelligence,™ 6 while Robert
McGinn has defined “technological activity” as a “purposive, methodological enterprise that fabricates
or is constitutive of material outcomes.™’ Such definitions not only fail to provide guidance in
answering the question of software subject-matter patentability, they make clear exactly why the
question is so difficult to answer.

Computers have expanded, both vastly and rapidly, the range of “intelligence” and “purposive,
methodological enterprise” that may be implemented in automated procedures in the form of software.
In general, patent law has tended to absorb new technological fields, such as those created by the
harnessing of electricity and the invention of the internal combustion engine, relatively easily due to the
fact that such new fields provided improved means for performing functions already within the province
of technology. For example, although the internal combustion engine enabled substantial automation of
transportation, patent law was well-versed with existing, albeit more primitive, transportation devices.

Although many kinds of software similarly automate or otherwise improve upon the functions
performed by previous machines (as exemplified by a software word processor in comparison to an
electric typewriter), computers also make it possible to implement automated procedures in the form of
software that performs functions never previously performed by machines. Examples of such software
include software for performing fully-automated business methods, natural language processing (e.g.,
speech recognition and language translation), and digital image processing. Similarly, expert systems,
graphical user interfaces, and genetic algorithms enable computers to make decisions, interact with
humans, and solve problems in ways never before achievable by machines alone.

52 For example, “application utility” could further be subdivided into different levels of social utility, such as the utility of a
process to its direct user and the higher-level utility of the process to an enterprise employing many such users performing
many instances of the process. Returning the mechanical cash register example, the cash register’s “user utility” might be the
calculation of the total price of a bag of groceries, while the “enterprise utility” might be increased throughput of customers
through the queue.

33 See supra Section 11LA.

5% The following discussion is also applicable, though perhaps with a somewhat different flavor, to the meaning of
“industrial.”

55 For an excellent discussion of this topic, see John R. Thomas, The Post-Industrial Patent System, 10 Fordham Intell. Prop.
Media & Ent. L.J. 346 (1999).

% Id. atn.193.

57 Id. atn.207.

The existence of software that performs functions previously requiring human judgment and even
expertise, such as expert systems, illustrates that computers are expanding the range of activities that can
be implemented in machines. In this sense, computers are merely doing what technology has always
done. Books replaced bards and electromechanical looms replaced seamstresses, just as expert systems
have begun to replace their human counterparts today. Although technological advances may not fully
replace human skill in particular instances, there is no question that the goal of technology is to put the
genie in the bottle. The problem raised by software is that the rate and scope of genie bottling has
increased more rapidly than the law has been able to adapt.

In particular, software now makes it possible for functions previously classified within the /iberal arts to
be performed fully automatically by machines. Language translation software, image processing
software, and software for performing fully-automated business methods are Just a few examples. Law
firms are already charging clients for use of software that provides legal services.”® To the extent that
the difference between patentable and non-patentable subject matter rests on a distinction between the
technological arts and the liberal arts, the distinction breaks down in the face of the ability of a
technological device — a general-purpose computer programmed with particular software — to perform
functions traditionally falling within the /iberal arts.” Although one might turn to the requirement of

“industrial application” for assistance, we no longer live in the industrial age and should not expect a
standard that was developed to protect industrial innovations to provide the right solution when applied
to innovations in a different space. The value of advances in the categories of software under discussion
lies not necessarily in their industrial application but in the other kinds of social benefits they provide.
For better or worse, no appeal to existing standards such as “industrial application, “technical effect,”
“practical utility,” or “useful, concrete, and tangible result” can enable us to avoid answering the
underlying question whether software that performs functions falling squarely within the traditional
definition of the “liberal arts” nevertheless should fall within the scope of patent law.

Answering such a question necessarily involves social value judgments and the resolution of public
policy questions that are beyond the competence of patent examiners and judges to decide. Until an
informed public debate is engaged and concluded on this question, therefore, the best that we can do is
to work to develop pragmatic rules of decision which are consistent with existing law and which do as
little damage as possible to the fundamental public policies underlying the patent system.

58 See Richard Susskind, The Future of Law (Oxford 1996).

% Interestingly, this breakdown is evidenced not only in the functions performed by software, but in the way in which
software is created. The act of programming a computer includes elements both of engineering and of literary authorship and
has been described as an art as much as a science.

10

About “trivial” software patents: the IsNot case

Jan A. Bergstra® Paul Klint®

® Informatics Institute, University of Amsterdam
and
Faculty of Philosophy, University of Utrecht

www.science.uva.nl/" janb

® Centrum voor Wiskunde en Informatica (CWI), Software Engineering Department
and
Informatics Institute, University of Amsterdam

www.cwi.nl/ paulk

August 30, 2005

Abstract

So-called “trivial” software patents undermine the patenting system and are detrimental for inno-
vation. In this paper we use a case-based approach to get a better understanding of this phenomenon.
First, we establish a baseline for studying the relation between software development and intellectual
property rights by formulating a life cycle for the patenting system as well as three variations of the
software life cycle: the defensive patent-aware software life cycle that prevents patent infringements, the
more offensive patent-based software life cycle that aims both at preventing infringements and at creating
new patents, and the IPR-based software life cycle that considers all forms of protection of intellectual
property rights including copyright and secrecy.

Next, we study an application for a software patent concerning the inequality operator and a granted
European patent on memory management. We also briefly mention other examples of trivial patents.
These examples serve to clarify the issues that arise when integrating patents in the software life cycle.

In an extensive discussion, we cover the difference between expression and idea, the role of patent
claims, software patents versus computer implemented inventions, the role of prior art, implications of
software patents for open source software, for education, for government-funded research, and for the
current debate on the proposed EU patent directive. We conclude the discussion with the formulation of
an “integrity axiom™ for software patent authors and owners and sketch an agenda for software patent
research.

We conclude that patents are too important to be left to lawyers and economists and that a complete
reinterpretation of the patenting system from a software engineering perspective is necessary to under-
stand all ramifications of software patents. We end with 12 explicit observations and recommendations.

1 Background

For many years, there have been concerns in the Unites States (US) about the possibilities to patent “trivial”
software techniques and business methods. The patenting laws in the European Union (EU) have always
been more restrictive than their US counterparts, but in the discussion about the proposed new EU directive
about patenting computer implemented inventions (CII), or software patents for short, the level of triviality
of a software patent has become a focal point in the debate: does a patent lay claims on techniques that are

generally considered to be common knowledge or does the patent claim a real invention?
As part of a 3 year European Commission (EC) study' on the effects of software patents on innovation

we are involved in a multi-disciplinary effort to understand the effects of software patents. These effects

1 Study of the effects of allowing patent claims for computer-impl d i i a joint study by MERIT (University of

are studied from legal, economical, and computer science perspectives. The goal of the current paper is
to study trivial software patents from a computer science perspective and to make a contribution to the
discussion among experts from the three disciplines just mentioned. For economic effects we refer to
[19, 11] and for legal aspects to [30, 5].

Software patenting is a relatively new topic for both authors, as it probably is for most software engi-
neers and computer scientists. For completeness, we mention that both signed a petition to the European
Parliament [31]. The second author has acted as speaker on a conference about the topic [13] (later adopted
as point of view of the Royal Dutch Academy of Sciences) and has written a column about it [22]. Our
professional interest in the topic stems from a long involvement in software engineering research ranging
from study of the software life cycle [10], concepts of programming languages [9], theory, design and
use of software components [6, 7, 8], generic language technology [12] and program analysis [21]. Both
authors have cooperated in setting up the MSc curriculum in Software Engineering at the University of
Amsterdam, now organized in cooperation with Mark van de Brand of the Hogeschool van Amsterdam and
taught in cooperation with Hans van Vliet from the Vrije Universiteit in Amsterdam. Software patenting is
therefore a major concern for us.

The plan of the paper is as follows. First, we start exploring how what seems to be a huge distance
between the world of patents and the world of software engineering can be bridged. First we design
in Section 2 a life cycle for the patenting process and next we make a connection between patents and
software engineering by designing a patent-based software engineering life cycle (Section 3).

Given this conceptual framework, we study recent examples of software patents in order to get a better
perspective on the implications for these software life cycles. In Section 4 we describe a recent patent
application that might be a candidate for the predicate “trivial software patent”. In Section 5 we present
various views on this application. In Section 6 we briefly analyze a European patent on memory allocation
and conclude that its novelty is strongly debatable. Next, we mention in Section 7 other trivial patents, both
from the US and from Europe. A discussion (Section 8) and conclusions (Section 9) complete the paper.

2 The patent life cycle

It is important to describe the phases of the patenting process in such a manner that they become recog-
nizable for the software engineer. We conjecture that the Patent Life Cycle shown in Figure 1 is a fair
representation of this process. It consists of the following phases:

e An applicant applies for a patent.
o The applicant can decide to withdraw the application.

o The Patent Office can either grant or reject the application.

The applicant can appeal against this decision and a reject decision may be changed into a grant
decision.

The applicant of a granted patent applicant becomes the holder of the patent.

A granted patent may be challenged by another party. This may lead to revocation of the patent.

The patent holder may act on infringement of its patent.

The patent holder may license its patent to another party.
o The patent holder may extend its patent periodically.

o The patent expires after a maximal duration.

Maastricht, Netherlands), Centre of Intellectual Property Law CIER (University of Utrecht, Netherlands), Centrum voor Wiskunde
en Informatica (Amsterdam, Netherlands), Telecommunication Engineering School at the Universidad Politécnica de Madrid (UPM),
Spain and Centre for Research on Innovation and Internationalization (CESPRI) at Bocconi University, Milan, Italy.

Patent
Life cycle

= ction by spplicant 0] - endoriie

(Q = action by third party ["] =action by patent office

) = statutory action

Figure [: The patent life cycle: from filing to expiration

It is open for debate whether this abstraction of the patenting process can be used in the EU as well as in
the US and Japan. However, since software developers have to be aware of potential patent infringements,
independent of the source of the patent, such an abstraction of the patenting process is essential. This is
relevant for developers of both commercial software and open source software.

The IsNot patent to be discussed later on in Section 4 is in the application phase, for all other patents
mentioned in this paper we have explicitly indicated their status.

3 Baseline: an IPR-based software engineering life cycle

The next step is to make a connection between the patenting process—or rather Intellectual Property Rights
(IPR) in general—and software engineering practices.

3.1 The software life cycle

In software engineering, the software life cycle is a frequently used manner of organizing the software
development process. Figure 2 shows a strongly simplified version of the life cycle taken from a standard
textbook [35]. It consists of the following phases:

e Requirements engineering: collect the requirements and expectations from the future owners and
users of the system.

e Design: translate the requirements in a specification that describes the global architecture and the
functionality of the system.

A Software
Vav \v Life Cycle

=N
Y

V&v \
| Maintenance
V&V |

V &V = Validation and Verification

Figure 2: The software life cycle

o Implementation: build the system.This amount to transforming the design into software source code.
o Testing: test that the implemented system conforms to the specification.
e Maintenance: install, maintain and gradually improve the system.

It should be emphasized that the software life cycle covers design and construction of a software product
as well as its use. Each phase contains a Validation and Verification (V&V) sub-phase in which the quality
of the deliverables of that phases are controlled. Also note the backward arrows that make this into a real
“cycle’: it is possible to discover in later phases that decisions made in a previous phase have to be revised.
We will now proceed in three steps. First, a defensive Patent-aware Software Life Cycle is sketched
that ensures that the software development organization does not infringe patents of third parties. Next, a
more offensive Patent-based Software Life Cycle is described that also considers the options to file patent
applications for knowledge that has been generated in each phase of the life cycle. Finally, the IPR-based
Software Life Cycle extends the previous one to all IPR options: secrecy, copyrights and patents.

3.2 The patent-aware software life cyle

In Figure 3, we sketch a Patent-aware Software Life Cycle in which an extra sub-phase is added that
performs patent validation. This generates immediately many unsolved questions. For each phase one may
wonder:

e Isit possible to infringe patents in this phase?
o If so, how can one find such infringements?
e How can such infringements be resolved?

The Patent-aware Software Life Cycle is a defensive step that any commercial or open source software
development process should adopt. Clearly the costs for software development will increase significantly.

R"““"""“"I_ F Patent-aware
™ \?v " \‘ Software
e Life Cycle
R] pee 6
~ V&V
Pateat Validation |-

V &V = Validation and Verification

Figure 3: The defensive patent-aware software life cycle

3.3 The patent-based software life cycle

It is, however, possible to go one step further. In Figure 4 we sketch a Patent-based Software Life Cycle
in which yet another sub-phase has been added that performs patent applications whenever possible. We
conjecture that this strategy is only available to the software development organizations with the deepest
pockets. For each phase now further questions apply, such as

o Does this phase generate patentable knowledge?
o Should we file a patent application for this knowledge?
e Are there other means to avoid that this knowledge generates an advantage for our competitors?

In many large software development organizations there exist “Chinese walls” between software devel-
opers and patent attorneys. This is not only the case for large commercial organizations but also for large
open source projects like the Apache Foundation. The rationale being that the less software developers
know about patents the stronger the position of the organization is in legal disputes. Implementation of
the Patent-based Software Life Cycle may require similar measures. Of course, such measures completely
defeat one of the primary goals of the patent system, i.e., knowledge dissemination.

3.4 The IPR-based software life cycle

The ftinal step is the IPR-based Software Life Cycle sketched in Figure 5 that takes all aspects of IPR into
account during software development. For each phase the questions now become:

o Does this phase violate copyrights of others? If so, remove those violations.

e Does this phase infringe patents? If so, negotiate a license with the patent holder or take technical
measures to avoid the infringements.

¢ Does this phase generate valuable knowledge? If so, consider the following three options:

" Requirements : "
uirem: Patent-based

i) Software
Patent A;Eﬁca%m_n. Dwgn T Life Cycle
[Patent Am‘hininiwm

V&VI

M\%ﬂ@i Testing

vV&v ‘\\
Patent Validation v

atent Application[F s
S
V&V
Patent Validatio
Patent Application

V &V = Validation and Verification

Figure 4: The offensive patent-based software life cycle

— Keep the knowledge secret and take appropriate legal or technical measures to achieve this.
- Establish copyrights on this knowledge.
— File patent applications for this knowledge.

These questions form a comprehensive description of the IPR policy one would expect of the biggest,
multi-national, software development organizations.

3.5 Discussion

These extended software life cycles already raise many fundamental questions that are not easy to answer:

o [sit possible to use these extended software life cycles in such a way that they comply with the major
patenting systems world wide?

e How can the software engineering knowledge that is hidden in the patent data bases made accessible
for software engineers?

e Isit possible to a give an operational definition of a patent infringement that can be used by software
engineers?

o For each of the phases of the software life cycle (requirements engineering, design, implementation,
testing and maintenance) the following questions should be answered:
~ How is knowledge in this phase represented?
~ Where can prior art for this phase be found?
— How can patent infringements in this phase be identified?

— How can patent infringements in this phase be resolved?

We expect that the answers to these questions will widely differ for each phase.

IPR-based
Software
Life Cycle

Ve Y
IPR Application? ' |l

S & Ve
_IPR Validation _
TPR Application?

'V &V = Validation and Verification

Figure 5: Considering all options: the IPR-based software life cycle

e What are the technical implications for software development when using these extended software
life cycles?

e What are the economic implications of the extended software life cycles?

We will come back to these questions in the remainder of this paper and in Section 8.10 we will propose a
research agenda.

We will now relate the high-level discussion in the previous sections to the daily practice of software
patents by studying several examples.

4 The IsNot patent application

On May 14, 2003 the three Microsoft employees Paul A. Vick jr. (technical lead for Visual Basic), Cosica
Corneliu Barsan (member of the Visual Basic compiler team), and Amanda K. Silver (program manager
on the Visual Basic compiler team) filed United States Patent Application #437822 with the title “IS NOT
OPERATOR”. The abstract of the IsNot patent application (as we will call it) reads as follows:

A system, method and computer-readable medium support the use of a single operator that
allows a comparison of two variables to determine if the two variables point to the same
location in memory.

The 8 page application consists of 24 claims followed by a description of the background of the in-
vention, and detailed descriptions of illustrative embodiments. The first 5 claims of the application read as
follows:

What is claimed:

1. A system for determining if two operands point to different locations in memory, the system
comprising: a compiler for receiving source code and generating executable code from the

source code, the source code comprising an expression comprising an operator associated
with a first operand and a second operand, the expression evaluating to true when the first
operand and the second operand point to different memory locations.

2. The system of claim 1, wherein the compiler is a BASIC-derived programming language
compiler.

3. The system of claim 1, wherein the operator is IsNot.

4. The system of claim 1, wherein the compiler comprises a scanner, a parser, an analyzer and
an executable-generator.

5. The system of claim 4, wherein the source code comprises at least one statement, and
the statement comprises a keyword representing the operator, the keyword recognized by the
scanner.

The remaining 19 claims go into more details such as the parser determining that the operator is pre-
ceeded and followed by an operand, the fact that error messages are generated when the IsNot keyword or
one of its operands are missing, the fact that executable code is generated, and so on and so forth.

The patent application describes that the invention can be used in exemplary computing environments
ranging from PC, handhelds, servers, automatic teller machines, and more. The application also sketches
in detail the hardware architecture of a typical PC using the invention. The application also explicitly states
(in paragraph [0050]) the following:

It will be recognized that although in the examples, the operator is designated as “IsNoT”,
the invention is not so limited. Any suitable case sensitive or case insensitive tag for the oper-
ator is contemplated by the invention, such as, but not limited to “Is_Not”, “isnot”, “Isnot”,
“Is_Not”, “is_not” and so on.>

5 Analysis of the IsNot patent application

5.1 IsNot is a trivial software patent

A lawyer or other non-specialist may be impressed by the clever invention described in the IsNot appli-
cation, but each first-year computer science student will recognize what it is about: this is the inequality
operator between pointer values as is known from many different programming languages ranging from
the Branch Not Equal instruction BNE in PDP11 assembly language [14] to the not equal operator . NE .
in Fortran [3] or the not equal operator ! = in C [20], Java [17] or C# [16].

For a computer scientist, the idea of having a single operator for comparing two pointer values is
common knowledge and the publications cited above constitute prior art.

For a computer scientist, granting this patent application will have devastating effects since it will cover
a large majority of the software worldwide and will completely block any further software development or
at least dramatically increase developments costs due to licensing.

5.2 IsNet is not a trivial software patent

We find it hard to believe that the highly skilled software developers at Microsoft (or their well-known
colleagues at Microsoft Research) are unaware of the prior art mentioned above. It is also striking that prior
art occurs in one of Microsoft’s own products (the language C#). One is tempted to speculate about the
intentions of the applicants and their sponsors with this particular patent application. Several possibilities
come to mind:

o They think that the subject matter is new and this should be the default assumption. This raises
the question whether there exists (or should exist) a form of “patent etiquette” that assumes that
applicants truly consider their invention as new. According to Park {27], there is no explicit duty of

21t seems that the two occurrences of “Is_Not” are a typo in the application.

disclosing prior art in the European Patent Office, whereas the Patent Offices in the US and Japan
require the applicant to disclose the closest prior art that he acknowledges when the patent application
is filed. See Section 8.9 for a further discussion of this topic.

o They find that the matter of trivial patents and determining prior art need clarification and that filing
a patent application is the fastest road to achieve this goal, independent of the likelihood of accep-
tance. This defines the future options for patenting relatively simple inventions. When rejected, the
application builds up prior art and may be used to provide indemnity to clients against intellectual
property claims.

What if our first analysis from a computer science perspective is too naive? Is it still possible to
discover some form of innovation or hidden meaning in this application that merits its acceptance? We see
the following possibilities for this:

o The patent application is about the specific naming of the comparison operator. This is suggested
by the explicit phrase in the patent application we cited above: “Any suitable case sensitive or case
insensitive tag for the operator is contemplated by the invention, such as, but not limited to ...”. This
would mean that the application is not about the idea of an inequality operator but about the specific
form of that operator. In this way, the application would establish a form of copyright on the operator
name “IsNot”.

o The specific context of BASIC is the substance of the application. This also makes finding prior art
hard.

o By patenting this specific operator in BASIC, alternative implementations of the language can be
discouraged, or at least interoperability is hindered.

e The patent application is not concerned with the IsNot operator or the inequality operator at all. They
just serve as a smoke screen to hide an idea in one of the 23 other claims. Is the patent about giving
an error message when an operand of the IsNot operator is missing? Is this patent about BASIC-
compilers using a certain compiler organization? As far as we can judge these claims describe
common practices in compiler construction and language implementation and cannot be considered
to be inventions. This does, however, not mean that it is easy to find prior art since most of the claims
are very specific and may not occur in the literature. We invite the reader to investigate these claims
and to challenge our analysis.

o The application has yet an other meaning, for instance, challenging the patenting system. In this
case, we really congratulate the applicants for their brilliant contribution. Some implications are
further discussed in the remainder of the paper.

5.3 Our opinion
Our opinion about the IsNot patent application can be summarized as follows:

o The IsNot patent application would, when granted, lead to a trivial patent and its inventive step does
not differentiate itself from the manifest prior art given above. It is hard to understand why this
application would be granted. When granted, this patent could indeed be very harmful for further
development.

o In asimilar fashion as each scientific publication needs a rationale, we miss a rationale for this patent
application.

o It is undesirable that others would have the obligation to find prior art. Given the fact that US patent
applications are required to disclose prior art, it is at least curious that this application gives none.

e It is unclear what an infringement of this patent (when granted) would mean. Is the design of a
programming language that contains an inequality operator an infringement? Is every program that

uses an inequality operator an infringement? Is the mere notion of an inequality test in any form an
infringement?

e We don’t see a convincing argument why a major company would need this patent, apart from tactical
considerations where this patent may clearly play a role.

o Is this a typical patent application? It could be argued that this patent application is one of a kind,
and that our analysis of it is thus irrelevant. Although we agree that this is one specific example of
a trivial patent application, it is an application from a large firm with a large patent practice, and
certainly sufficient resources to determine whether an “invention” is trivial, and to identify prior art,
prior to submitting a patent application. So we believe that if IsNot may not be a typical patent
application, it is certainly potentially typical.

6 Analysis of a European patent on memory allocation

We claim that a patent application is part of the patent life cycle (see Section 2) and is thus part of the
open literature and should be publicly discussed and scrutinized for novelty and compliance with prior art.
One may counter that the IsNot application may very well be rejected. From a European perspective, one
may also counter that such an application would never be accepted by the European Patent Office (EPO).
Therefore, we will also briefly analyze a patent granted by the EPO that we consider to be debatable.

On June 1, 1998, European Patent #3817044 on “Memory allocation in a multithreaded environment”
was granted to Sun Microsystems Inc. (US) with Nakhimovsky Gregory listed as inventor. The abstract
reads:

A method of allocating memory in a multithreaded (parallel) computing environment in which
threads running in parallel within a process are associated with one of a number of memory
pools of a system of memory. The method includes the steps of establishing memory pools in
the system memory, mapping each thread to one of the memory pools; and for each thread,
dynamically allocating user memory blocks from the associated memory pool. The method
allows any existing memory management malloc (memory allocation) package to be converted
to a multithreaded version so that multithreaded processes are run with greater efficiency.

The 8 page application consists of 21 claims followed by a description of the invention and preferred
embodiments. The first 6 claims read as follows:

Claims of EP0817044

1. A method of allocating memory in a multithreaded computing environment in which a plu-
rality of threads run in parallel within a process, each thread having access to a system mem-
ory, the method comprising: establishing a plurality of memory pools in the system memory;
mapping each thread to one said plurality of memory pools; and for each thread, dynamically
allocating user memory blocks from the associated memory pool.

2. The method of claim 1 wherein the step of dynamically allocating memory blocks includes
designating the number of bytes in the block desired to allocate.

3. The method of claim 1 further comprising the step of preventing simultaneous access to a
memory pool by different threads.

4. The method of claim 1 further comprising the step of establishing a memory pool for each
thread comprises allocating a memory buffer of a preselected size.

5. The method of claim 4 further comprising the step of dynamically increasing the size of the
memory pool by allocating additional memory from the system memory in increments equal to
the preselected size of the buffer memory.

6. The method of claim 4 wherein the preselected size of the buffer is 64 Kbytes.
The remaining 15 claims go into more details about the specific data structure to represent the memory
pool and the memory blocks, and about the deallocation of blocks as well as their merger after deallocation.

Although the subject matter of this patent is not as astonishingly simple as that of the IsNot example,
any computer scientist will see what this is about: memory allocation as it occurs in operating system

10

kernels and concurrent applications. A simple way to implement this is to have a single pool of memory
blocks that can be claimed by one of the parallel processes (threads). However, to avoid corruption of
the administration of the memory pool, access to the memory pool has to be strictly sequential. This is
achieved by locking and unlocking the memory pool during each request. Since this locking introduces a
time penalty, the idea formulated in this patent is to use a separate memory pool per process (thread).

In our opinion the idea to avoid the use of shared variables is trivial. We conjecture that this idea is
not new and we think that there is a proof obligation on the part of the applicants to show how this patent
improves upon earlier work (see Section 8.9).

This patent can have a major impact on the implementation of most, if not all, operating system kernels
and its mere existence poses a threat to further development.

7 Other trivial patents

There are many examples of trivial software patents worldwide.? Examples are:

e US Patent 4648067: Footnote managemnient for display and printing (IBM, 1987). This patent de-
scribes the handling of footnotes in a text processing system. This is a standard technique that has
been used in every text processor since 1970.

e US Patent 5530794: Method and system for handling text that includes paragraph delimiters of
differing formats (Microsoft,1996). This patent describes the conversion of text documents from
Unix text files to MS Word format by inserting a carriage return character. Since the characters
carriage return (CR) and line feed (LF) were invented, different operating systems have used them in
different ways to end each line. This is a trivial technique that has been in use ever since.

e US Patent 5175857: System for sorting records having sorted strings each having a plurality of
linked elements each element storing next record address (Toshiba, 1992). This patent describes
sorting using linked lists. This is a standard technique found in every textbook.

¢ US Patent 6877000: Tool for converting SQL queries into portable ODBC (IBM, 2005): This patent
describes how SQL queries can be translated into queries for the portable database interface ODBC.
This obvious technique must be used by every database system that connects to ODBC.

Many other examples of trivial software patents are known.* From the fact that the above examples are
all US Patents one might draw the conclusion that the US Patenting Office is more likely to issue trivial
software patents. We think that this is not correct. The explanation is rather that the problem of trivial
software patents has been in existence in the US for over 20 years and that the US patent databases have
received more public scrutiny than, for instance, the European patent database. As an initial proof of this
statement we have collected, in a very limited amount of time, the following European Patents that we
consider to be trivial. Some trivial, but expired, patents are:

o European patent 10186: Apparatus for handling tagged pointers (IBM, 1980). This patent describes
the addition of a tag bit to pointers in order to discriminate them from ordinary data. This is an old
technique that has been used in various systems.

e European Patent 97818: Spelling verification method and typewriter embodying said method (IBM,
1984). This patent describes spell checking.

o European Patent 98959: Method for producing right margin justified text data in a text processing
system (IBM, 1984).

3In this section we give examples of patents which we suspect to be trivial in nature and merit further study. A meticulous search
for prior art is needed for each example. The fact that a patent is listed here does not imply a final judgment on our part of the patent's
triviality or validity. The purpose of this section is merely to raise the awareness of potential trivial patents.

4See, for instance, http: //www.base.com/software-patents/examples.html.

11

More recent examples are:’

¢ European Patent 698844: Tunnel icon (IBM, 1996). Describes a tunnel-like icon to which the user
can drag files in order to encrypt or decrypt them. This patent is not particularly interesting or
harmful but illustrates the level of detail and specificity the subject matter of a patent can have.

o European Patent 752695: Method and apparatus for simultaneously displaying graphics and video
data on a computer display (Sun, 1997). This is a common technique for displaying information in a
windowing system that has been in use for many years.

e European Patent 1043659: File signature check (Konami, 2000). This patent describes the use of
checksums to detect whether files in a file system have been changed. This simple technique has
already been used by many tools and is the obvious solution for this problem.

o European Patent 767940: Data pre-fetch for script-based multimedia systems (Intel, 2000). This
patent aims at speeding up the execution of multimedia scripts running in a limited memory client.
This is achieved by prefetching data references that occur in the script.

e European Patent 0195098: System for i‘eproducing information in material objects at a point of sale
location (Fpdc Inc, 1986).

“This invention contemplates a system for reproducing information in material objects at a point of
sale location wherein the information to be reproduced is provided at the point of sale location from
a location remote with respect to the point of sale location, an owner authorization code is provided
to the point of sale location in reponse to receiving a request code from the point of sale location
requesting to reproducing predetermined information in a material object, and the predetermined
information is reproduced in a material object at the point of sale [ocation in response to receiving
the owner authorization code.”

This patent (on downloading and burning CDs!) was recently overturned by the UK High Court [26].
As the EPO did not overturn it, it is unclear whether the High Court would have been able to overturn
this if the Directive that enforced the EPO’s status quo to be uniformly implemented across the EU
were in place.

To conclude. we mention some recent patent applications:

o European Patent 1046117: Web browser graphics management (Philips, filed 1999). This patent
application describes a prefetching mechanism for web browsers that has been floating around for
many years, for instance in the Mozilla browser, where it is called link prefetching.

o European Patent 1014627: Constrained shortest path routing method (Lucent, filed 1999). This ap-
plication describes an algorithm for shortest path calculation and seems to be a variation on Dijkstra’s
algorithm [15].

As already stated, the above examples constitute cases where we suspect that triviality and/or existing prior
art make thesc patents or patent applications undesirable. Clearly, a public effort should be launched to
scrutinize the European patent data base and look for trivial software patents.® Another public effort that is
badly needed is to set up a searchable archive of prior art for software.

8 Discussion

8.1 Expression versus idea

The common view on copyright versus patenting is that copyright protects the expression of an idea, while a
patent protects the idea itself. One idea can be expressed in many different ways. In other words, copyright

5See http://swpat.ffii.org/patents/samples/index.en.html for a more extensive collection of trivial Euro-
pean patents.

6The reader is invited to inspect the Patent WIKI database at http://gauss.££fii.org/GaussFrontPage and do some
searching. It includes all patents issued by the European Patent Officc. We can guarantee that there is some entertainment in this.

12

can protect one specific mystery novel, while a patent on the idea of a mystery novel itself will prevent
anybody else to write mystery novels. The relevant US statute [34] reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or compo-
sition of matter, or any new and useful improvement thereof, may obtain a patent therefor,
subject to the conditions and requirements of this title.

U.S. courts have summarized this principle by stating that patents do not apply to ideas themselves, but
to "implementations” of ideas, intending a broader and more inclusive sense of “implementations” than is
commonly given in the software development community. It is akin to the notion that copyright protects
expressions of ideas rather than ideas themselves [25]. A similar definition can be found in the TRIPS
treaty [36] that regulates trade-related aspects of intellectual property rights:

... patents shall be available for any inventions, whether products or processes, in all fields of
technology, provided that they are new, involve an inventive step and are capable of industrial
application.

Now it happens to be the case that software engineering has its own ideology about the distinction
between idea and expression of that idea. A specification of a software system describes the desired func-
tionality of a system and defines what is required. The specification leaves open many options how the
specified system will be built (the implementation’ of the system).

For a software engineer, it is hard to understand why software patents (supposed to be about ideas, e.g.,
specification level) end up having detailed flowcharts that belong to the implementation level. This raises
the issue how software engineering and the patenting system interfere.

Another observation is that the legal language in patents is about software. Now it also happens to
be the case that the topic of software specification has a long history in computer science and, from a
computer science perspective, the legal descriptions in patents can in no way be classified as such. In that
sense patent texts are technically (but, of course, not legally) unacceptable for software engineers, which
has implications for their utility as disclosure documents.

In our opinion, the patenting literature should take good notice of what is known about describing soft-
ware systems. A crucial observation is here that the notion of formally describing an idea does not occur
in the software engineering literature and it will be very hard to achieve this in patent texts. Another obser-
vation is that we think that it is unavoidable that patent texts will become machine processable documents
that will form an integral part of software in a similar fashion as specification, documentation, test cases
and the like form an integral part of a software system.

A final, and also crucial, observation is that the requirement that a patent should make a “technical
contribution” is hard to reconcile with software that lives in the realm of logical structures. In this way,
software patents have to be expressed in unnatural ways that lead to under-protection as well as over-
protection of certain inventions.

This is eloquently described by Plotkin [28], he proposes a complete reinterpretation of the patenting
system from a software perspective. His observation is that there are crucial differences between the in-
vention, description and patenting of electromechanical devices as compared to software programs. His
key observation is that for electromechanical devices apart from a functional design, deriving a physical
structural design is hard and also essential for obtaining patent protection. In the case of software, the log-
ical structures described by the source code are the end point of human invention: the step to their physical
realization is fully automated. Plotkin’s objectives are the following:

A methodology is proposed for determining how particular areas of law should apply to soft-
ware. The methodology asks and answers four questions: (1) What is software?, (2) How does
software differ from other creative works?, (3) How are such differences legally relevant?, and
(4) How should the law treat software in light of such differences? Application of the first half

TThe word “implementation” is a multi-faced sword that may easily cause harm. In a legal sense, as in the previous paragraph,
implementation denotes any method to go from idea towards its realization. Following that meaning, the specification of a software
system is already an implementation of the idea for that system. In a computer science context, implementation always refers to the
actual building and realization of a system in software.

13

of this methodology reveals that computer programs have the unique quality of being human-
readable and computer-executable instructions that describe actions in purely logical terms.
Application of the second half of this methodology to patent law and the First Amendment
to the US Constitution reveals that software’s unique features violate the law’s assumptions,
leading to results that are at odds with the underlying public policies in each case.

In later work [29] Plotkin proposes software patents in such a way that:
o a software program be claimable solely in terms of its logical structure;

® a software program be patentable if:

the inventor provides a written description of the claimed logical structure;

the inventor provides a description that enables one of ordinary skill in the art to make and use
the claimed program without undue experimentation;

the claimed logical structure has a practical utility;

the inventor conceives of the claimed logical structure;

the claimed logical structure is novel and nonobvious; and

e the scope of a software patent claim be limited to products and processes that embody the claimed
logical structure.

Other interesting proposals exist for reforming the patent system or for providing other forms of legal
protection for software but they are not further discussed here. A concise summary of the history and
current status of software patentability can be found in [18).

8.2 The role of patent claims
In [24] Lening and Cavicchi say about claims:

A claim is what an inventor is stating to be unique about the invention. The claims become the
actual monopoly granted to the invention. Claims define the scope of protection granted to the
invention.

A claim can be independent (it stands by itself and is not dependent on another claim) or dependent (it
makes express reference to a previous claim and depends on it). In the IsNot patent application, claim 1
is an independent claim while claim 2 is a dependent claim. A patent may also contain descriptions of
preferred embodiments but they just serve as illustration and may at most be used to interpret the claims.
A patent may contain both independent and dependent claims and the question arises what an infringement
of a patent means exactly®

o If one (all) independent claims is (are) violated?
o If one (all) dependent claims is (are) violated?

The precise procedure for interpreting the claims in a patent seems to be an “art” and is a matter of debate
among lawyers [4]. This is unsatisfactory from a software engineering perspective.

The status of claims needs also further clarification in the light of the “expression versus idea” discus-
sion given earlier in Section 8.1. The question being: what is an infringement?. From the perspective of
the software engineering life cycle (Section 3) the following questions need clarification:

o Is infringement possible during requirements engineering?
o Is infringement possible during design?

e Is infringement possible during implementation?

3The same questions can be asked when searching for prior art related to patent applications.

14

o Is infringement possible during testing?
o Is infringement possible during maintenance?

To be on the safe side, we have assumed in our patent-based software life cycle that the answer to all these
questions is “yes”. However, the nature of such infringements will be completely different, both in their
description, appearance, and discovery.

During requirements engineering and design, only the intended behavior of the system is available. It is
for instance, impossible to observe a running version of the software. Infringements can only be discovered
by a deep semantic comparison between patent text and design documents.

During implementation, the desired behavior is coded as software program. Now it becomes possible
to observe the behavior of the software by executing it on a computer. It also becomes possible to perform
more syntactic comparisons between patent text and program text.

Software is both human-readable and computer executable, and this makes it unique among patentable
artefacts.

8.3 Software patent versus comptter implemented invention

We have, so far, spoken about “software patents”. However, the proposed EU patent directive speaks about
“computer implemented inventions” (CII) rather than software patent.

It may be maintained that software patents do not exist and that CII is the right phrase to use. We
completely agree that the notion of a computer implemented invention is a meaningful one and that such
inventions may be in need of patenting. In such cases computer programs may be used as an implementa-
tion strategy but a pure hardware implementation may be conceivable as well. In our opinion, all patents
discussed in Section 7 are software patents in a more generic sense. The patent is about how to achieve
something by means of running computer executable programs (software), or even on methods for writing
such programs or designing programming languages. None of these inventions makes any sense outside
the realm of programmed computers, and these inventions are about how something may be achieved given
that computer programs will be used. A software patent concerns an invention about a software-based
computer implementation, while a computer implemented invention is about an invention that may be im-
plemented in software.

We cannot imagine that the IsNot patent application could be classified as a computer implemented
invention which may admit a pure hardware embodiment, since this would amount to a single not gate. As
a consequence the mere need to grant patents for clear cases of computer implemented inventions (e.g.,
the design of novel control software/hardware for an airbag) should not be taken as an argument that pure
software patents do not exist. The software industry will soon be in a need to deal with a massive number
of “true software patents”. A careful consideration of the rules of that game from a software engineering

perspective is necessary to grasp the effects of the introduction of patent regulations that will generate an
abundance of such patents.

8.4 The role of “prior art”

Prior art is defined as the body of prior knowledge relating to the claimed invention, including prior use,
publications and patent disclosures [24]. During the patent life cycle (Section 3), prior art plays a role at
different moments:

e When an application is rejected, the applicant can dispute prior art that is used in the motivation of
the rejection.

e When the patent is challenged, the challenger has to produce prior art that invalidates one or more of
the claims of the patent.

e When the patent holder acts on an alleged infringement of its patent by a third party, he must show
that the third party uses results or methods that are claimed by the patent (one could call this “poste-
rior art™).

15

In the patent application it is usually indicated which previous patents are used or extended. As already
discussed in Section 5.2, only the European Patent Office does not require to mention prior art that is known
to the applicant.

We conjecture that in all the three cases mentioned above, the determination of prior art is identical,
whether this is true prior art or posterior art as defined above.

A patent may describe a technique that computer scientists consider to be trivial. Nonetheless, it may
turn out to be very hard to find prior art for it. Well-known techniques cannot be published in a scientific
publication for the simple reason that they are already well-known and do not constitute a new research
result. These well-known techniques may be used in the source code of many software systems, but this
does not count as “publication” and cannot be used to illustrate prior art. At the same time, it may also
be the case that they are not covered by any patent and someone can just file a patent application for this
well-known technique.

Ullman [33] is among the most cited computer science researchers world-wide and he describes elo-
quently the difficulty to find prior art for a patent application about matrix triangularization that was later
used in an unsuccessful attempt to bring suit to the large spreadsheet manufacturers.

In disciplines like chemistry and biology the patent literature forms the actual documentation of inven-
tions. For software the unique situation exists that there is another powerful information source that plays
no role in the patent process: the source code itself. This is a major handicap when searching for prior
art. There is evidence that cross-citation between the patenting literature and the computer science litera-
ture is nearly absent [1]. Compared to software patents, business patents seem to contain relatively more
references to the non-patent literature [2]. Nonetheless, the world of software and the world of patents
seem mostly disjoint. From this follows that computer scientists are currently not well-aware of the patent
literature.

We may conclude that it is urgent to find new ways to establish prior art. One way is the creation of
public web sites that solicit and award proofs of prior art. It seems reasonable to include procedures in the
patenting system where the public can submit prior art against patent applications.

Another way for establishing prior art is the patent system itself. Suppose the IsNot application is
rejected. This fact can have a very positive impact: all the claims in the application are considered to
be un-patentable and this blocks future patents on the issues stated in the rejected claims. In this way,
a rejected patent application contributes to building up prior art. It is conceivable that major companies
follow this strategy in order to prevent patent applications by competitors or to provide indemnity to clients
against intellectual property claims.

8.5 Implications for Open Source Software

There has been active opposition from the Open Source Software (OSS) community against the emergence
of a system for software patenting. As discussed earlier in Section 8.2, the assumption that open source
software products allow inspection at a syntactic level does not imply a greater risk for infringement detec-
tion. To establish that this risk would be higher requires a very clear understanding of what constitutes an
infringement of a software patent and how to establish such an infringement. As discussed carlier, exactly
this understanding is missing. On the contrary, OSS producing companies or individuals may often afford
to distribute quite vague functional specifications using the fact that their user community is willing to take
some risks and to accept some trial and error, whereas producers of closed software components need to
specify in meticulous detail what is to be expected from their products and this may even give better clues
for those who search for potential patent infringements. We see therefore no reason why the authors of
open source should be more (or less) worried about the potential implications of software patenting for
their business than the authors of closed software, from the perspective of establishing infringement.

Itis true, however, that the distributed development model of open source rests upon a legal infrastructure—
open source licenses—that assume that individual authors own, and thus have the right to ”give away”, what-
ever they write. While this works in the copyright system, it is incompatible with patents, since individual
developers can no longer assume that they own what they write, and can thus never know whether they
have the right to "give it away” through open source licenses. This is a subject of further research in the
course of the on-going study.

16

Many commercial manufacturers are now disclosing sources under limited licensing schemes while
making use of substantial copyright protection. The variation of licensing schemes has much impact on the
economic models used and only some licenses lead to the much debated cost reduction that many people
consider typical for open source software. Source pricing and source disclosure are independent matters:
open source software may even be quite expensive in some cases. If that were not the case (in principle) the
whole patenting system should be considered irrelevant as such because it only protects users and producers
of disclosed information.

8.6 Implications for education

Patent law requires that a patent should be non-obvious to a “person skilled in the art”. As already observed
by Ullman [33], it is unclear what the background of such a person should be: ranging from a self-educated
programmer, via a bachelor or master in computer science or software engineering, to a professional re-
searcher in these areas. If we consider the Software Engineering Body of Knowledge (SWEBOK [32]) as
approved by IEEE, we are pretty sure that a person with that knowledge is unable to read or interpret soft-
ware patents let alone determine potential infringements. The patent-aware software engineering life cycle
(Section 3) also requires an increased level of awareness of software patents among software engineers as
well as the skills to turn this awareness into deeds.

It is clear that the current education of software engineers and the future requirements imposed by a
patenting system including software patents will be dramatic. As far as we aware, there is no curriculum
worldwide that is prepared for this. Governments should invest in the development of such curricula and
in major retraining of professional software engineers.

8.7 Implications for government-funded research

Software is developed in many research projects that are being funded by national governments. Most of
these project follow a traditional software life cycle that ignores patents. In order to avoid that governments
become vulnerable for extensive infringement claims, they should require that these projects switch to at
least a patent-aware software life cycle. This will require extensive additional funding for these projects.

8.8 Implications for the current debate on the software patent directive
The introduction of software patents in any form immediately raises the following questions:
a What constitutes prior art, and what is the status of existing programs.
b How to avoid trivial patents.
¢ How to design a patent-based software engineering life cycle.
d How to design a patent aware life cycle (less crucial but economically vital).

In the current debate in the EU we get the impression that acceptance of the draft directive “on the
patentability of computer-implemented inventions” (software patent directive), as it stands would lead to
de-facto software patents (in spite of the CII jargon) without the prerequisite clarification concerning the
issues listed above, thus creating unpredictable legal risks for many parties involved.

Amending the directive to such extent that there is no legal basis left for the protection of any software
components deprives manufacturing companies from legal means available to them now, and thereby intro-
duces additional risks just as well. This seems to lead to the position that neither the directive nor a version
of it that cuts out any IPR protection for software components (or against infringing software components)
is a step forward.

The current proposals seem to focus on software/hardware component specifications that constitute a
vital part of CIl’s. The functional specification of a unit is given (as part of the proposed CII architecture)
and then an infringement may result by producing a software component that meets the specification even
if the manufacturer has shown the ability to implement the specification by means of the description of
a piece of hardware. Thus some branches of industry propose (understandably) a capability to provide

17

this form of protection. Unfortunately, the resulting scope of IPR and infringement protection has been
insufficiently demarcated.

The modularization paradox Some assume that by requiring that embodiments of a patent have effects
that depend on laws of nature (though excluding software as such) conceptual problems can be solved.
This cannot be excluded per se though it may get paradoxical as follows:

e One may describe an invention as an application in technology rather than dealing with laws of
nature.

e One may consider computer programs as software and one may also consider software as belonging
to technology.

e Now consider computer programs P and) where () provides a context within which P may work.
On the one hand P + () cannot be patented as it is "software as such’, on the other hand P may be
patented because of its role it may play in the context of @@ (which is a technical context given the
above assumptions). :

Taking this observation to the extreme: in a context where software as such cannot be patented and
technical effects are required, one may be tempted to split a software invention into claimed components
and stated components where the stated components are part of the justification of the claimed components.
Interestingly this introduces a tendency to trivialize a patent description. More importantly, however, the
whole state of affairs with P and P+(Q is conceptually inconsistent. Therefore the dogma’s that software as
such cannot be patented and technical effects are required make sense only in a setting where one assumes
beforehand that a collection of software components never represents a part of technology.

How to move ahead? Given the fact that world-wide a large number of de-facto software patents exist
(even if a jargon is used that suggests these patents to be of another nature) it is already now important for
the EU to initiate substantial research and development for the clarification of the questions a—d mentioned
above. On the basis of such work technology can be developed that takes into account all existing patent
databases. In successive stages limited possibilities for the protection of

e software/hardware components specifications,

o software component implementations,

o software architectures,

o software processes (software engineering methods)

may be developed.

By doing this kind of work the EU will possibly lead the way in sophisticated use of software patent
databases while at the same time preparing for patenting regulations that really work. In terms of software
engineering these regulations themselves are just some form of standard concerning the software process.
It is clear that such a standard should only be enforced if it has substantial informal backing and if the
technology supporting it is sufficiently sophisticated.

We expect that in the long run software patents will indeed emerge and that this will lead to a wealth
of supporting technology. What is at stake here, is the risk that the EU misses the opportunity to leap
ahead by developing sophisticated legislation in which software is a first class citizen and also misses the
opportunity to develop the technology for supporting such legislation.

That leads us to this position: a sophisticated patenting system for (categories of) computer software
will enhance software technology in the EU, provided that the considerations given here are addressed
on a reasonably grand and effective scale. Introduction of a software patenting system without these pre-
requisites in place will have disappointing effects. The current opposition against the EC proposals is a
manifestation of these disappointing effects.

18

8.9 Integrity axiom for software patent authors and owners

We recommend to add the following integrity axiom to the assumptions about software patents: every
patent which is either live or in the application phase expresses the views held by its authors and owners
in the following way:

e The described invention did not conflict with prior art (in the most general sense of this expression)
when it came into existence and by definition has been so ever since. In addition, the patent is
non-trivial at that same moment in time.

o The patent authors rightly claim as professional software engineers the IPR for said invention.
o This IPR entitles them to economic revenues in an enforcible way.

e If the patent is owned by an organization that employs one or more of its authors, the relevant
management layers of this organization share the views stated above.

This axiom is non-obvious because filing a patent application is an action by some agent and the axiom
is about the mental state of that agent.

One might drop the integrity axiom in which case software patenting becomes some form of gaming
not primarily based on the meaning of the patents but rather on their tactical and dynamic properties. For
instance, a company might file a sequence of trivial patents just to exhaust the capacity of an economic
opponent to effectively complain about these applications in order to arrive at a stage where IPR can be
claimed even if it is not justified in real terms. But if the only way to get something out of patents would
be along these lines we tend to agree with Knuth [23] that the whole enterprise is flawed. The integrity
axiom excludes tactical patenting which is not based on reliable facts. This is very similar to scientific
publications which are also supposed to adequately represent author’s views.

8.10 A research agenda for software patent research

Taking software patents seriously means designing patenting systems and studying their implications. Here
are some suggestions for a research agenda.

Current status of software patenting regimes One should take into account at least what happens in the
USA, the EU, Japan, India and probably more. The Gauss database mentioned earlier is an example of such
work. Here one finds the systematic investigation into the non-triviality and prior art violations of existing
patents. We can imagine that a patent monitor is developed which enables the public to systematically
submit their opinions about existing patents. In addition various forms of text-mining and cluster analysis
can be employed to unlock the knowledge in the patent databases.

Revision proposals concerning the various regimes Several proposals have already been made for
revising the various regimes. These should be studied and compared in detail.

Designing possible software patenting regimes There is no reason to believe that one unique software
patenting regime can be designed, assuming that one exists at all. Thus many different regimes should be
investigated. For each regime a set of questions has to be settled: what constitutes prior art, what is an
infringement, how to define the particular ’patent speak’ and its semantics, definition of the appropriate life
cycles, and so on.

An important step might be to develop a collection op hypothetical software patents, i.e., rewrites and
perhaps simplifications of the software development history in which known developments are ordered in
such a way that some steps can convincingly be patented. The historical development of computer software
might even be simulated in a game-like fashion in order to study the impact that some patents (had they
existed) might have had.

19

Collection of prior art A crucial element in any patenting regime is the role of prior art. We propose to
investigate the possibilities for

o formalizing prior art, i.e., all relevant knowledge about software;

o formalizing the claims in patents;

e comparing formalized patent claims with formalized prior art;

e automated searches for patent infringements in existing software, given formalized patent claims.

We believe that this research agenda can contribute to a revision of the patent system and may even lead to
a form of software patents that behave as intended: disseminate the knowledge about inventions and give
rewards to true inventors.

9 Conclusions

Our main conclusion is that patents are too important to be left to lawyers and economists and that the
only way to fully understand the ramifications of software patents on existing software engineering is to
completely reinterpret the patenting system from a software engineering perspective. This will require ex-
tensive study and will also create competitive advantages for the EU. Now, hastily, accepting the proposed
directive on the patentability of computer-implemented inventions” (software patent directive) will have
adverse effects. More specifically, we have shown the following:

1.

Software is both human-readable and computer executable and this makes it unique among patentable
artefacts. The requirement that a patentable invention should make “a technical contribution” leads
to unnatural descriptions of software inventions and to inadequate claims.

- Rejected trivial software patents are a tool for establishing prior art.

. The European Patent Office should require that patent applications mention all prior art (not only

from the patent literature but especially from sources outside the patent literature) that is known to
the applicants. In practice, disclosure or even awareness of prior art is avoided for legal reasons (see
the discussion on “Chinese walls” in Section 3). This is an undesirable situation since it undermines
one of the primary roles of the patenting system: acting as a knowledge dissemination mechanism.

- A public effort should be launched to scrutinize the European patent data base and look for triv-

ial software patents. Such a public validation phase should become part of the patent application
procedure.

. The sources on which prior art searches are based should be extended in the case of software patents;

in particular web-sites, mailing lists, and software source code should be permitted as sources of
prior art.

. There is a need for a patent life cycle that can be used to better understand the patenting process; in

this paper we propose such a life cycle. Since software developers work worldwide, the patent life
cycle should abstract from specific patenting regimes (EU, US, Japan).

- We propose software life cycles that are patent-aware (defensive), patent-based (offensive), and IPR-

based (includes copyright, patents and secrecy). They are needed to reconcile software engineering
practices with the patenting system.

. Adopting any patent-related software life cycle increases the costs of software development.

. The fact that patenting of certain computer implemented inventions might be reasonable should be

considered independently from the implications of pure software patents. New forms for the protec-
tion of software inventions should be studied.

20

10. Governments should make major investments in designing patent-based curricula for software engi-
neering and computer science as well as in retraining programs for professional software engineers.

11. Governments should require that all software development that takes places in projects they fund
follow the patent-aware software life cycle. Otherwise, governments may become vulnerable for
infringement claims.

12. The EU should launch collaborative efforts to collect and categorize prior art in software engineering.
This will lead to a defense against software patents from outside the EU and it will also advance the
level of knowledge and technology to effectively handle patent information.

We cannot resist to conclude this paper with a quote from the world-famous Donald Knuth, professor
emeritus from Stanford University, in a letter to the US Patent Office [23], since it clearly summarizes
the opposition against the proposed software patent directive in the EU (although we do not draw the
conclusion that software patents are a bad idea under all circumstances):

The basic algorithmic ideas that people are now rushing to patent are so fundamental, the
result threatens to be like what would happen if we allowed authors to have patents on indi-
vidual words and concepts. Novelists or journalists would be unable to write stories unless
their publishers had permission from the owners of the words. Algorithms are exactly as basic
to software as words are to writers, because they are the fundamental building blocks needed
to make interesting products. What would happen if individual lawyers could patent their
methods of defense, or if Supreme Court justices could patent their precedents?

Acknowledgments

We thank our partners in the Study of the effects of allowing patent claims for computer-implemented
inventions for their insights and help. Reinier Bakels was very helpful in answering our questions about
legal matters, Bronwyn Hall pointed to relevant references, and Rishab Ghosh kept pressuring us to include
more European patent examples. All three reviewed drafts of this paper.

Erik Josefsson was helpful in pointing us to interesting EU patent applications and for settinguphttp:
//gauss.ffii.org/GaussFrontPage as a useful tool for patent research. Dirk-Willem van Gulik
draw our attention to the importance of Chinese walls between software developers and patent attorneys.
Paul E. Merrell pointed to inaccuracies in our draft descriptions of what is patentable and his suggestions
greatly helped to clarify this. Jan van Eijck helped to increase our insight by challenging our assumptions
about patents and Jo Lahaye was a stimulating discussion partner on this topic.

References

[1] G. Aharonian. Patent examination system is intellectually corrupt. http://www.bustpatents.
com/corrupt . htm, May 2000.

[2] J.R. Allison and E. H. Tiller. Internet business method patents. In W. M. Cohen and S. A. Mer-
rill, editors, Patents in the Knowledge-Based Economy, pages 259-284. National Research Council,
Washington, National Academies Press, 2003.

[3] ANSL http://www.fortran.com/F77_std/£77_std.html, 1977. ANSI Standard X3.9-
1978 and ISO 1539-1980.

[4] R. Bakels, 2005. Private Communication.

[51 R. Bakels and P.B. Hugenholtz. The patentability of computer programmes: Discussion of European
level legislation in the ficld of patents for software. Technical report, European Parliament, 2002.

[6] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press/Addison-Wesley,
1989.

21

7] J.A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37(2):335-372, 1990.

[8] J.A. Bergstra and P. Klint. The discrete time ToolBus — a software coordination architecture. Science
of Computer Programming, 31(2-3):205-229, July 1998.

[9] J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal of logic and algebraic
programming, 51(2):125-156, 2002.

[10] J.A. Bergstra and S.FM. van Vlijmen. Theoretische software engineering, kenmerken-faseringen-
classificaties, volume XX VIII of Questiones Infinitae. Zeno instituut voor Filosofie (Leiden-Utrecht),
1998. (In Dutch).

(11] J. Bessen and R.M. Hunt. An empirical look at software patents. Economics Research Working Paper
03-17/R, Philadelphia Federal Reserve Bank, March 2004.

[12] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In R. Wilhelm, editor,
Compiler Construction (CC "01), volume 2027 of Lecture Notes in Computer Science, pages 365—
370. Springer-Verlag, 2001.

[13] Software patents: the choice is yours. http://www.softwarepatenten.be/
conferenties/september(3, September 17, 2003. Brussels.

{14] Digital Equipment Corporation. Processor Handbook PDP11/45, 1974.

[15] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269~
271, 1959.

[16] ECMA International. C# Language Specification, 2nd edition, December 2002. ECMA-334, http:
//www.ecma-international.org/publications/standards/Ecma-334.htm.

[17] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.

[18] J. Halbersztadt. Remarks on the patentability of computer software — History, Status, Developments.
swpat.ffii.org/events/2001/1linuxtag/jh/swplxtg017jh.en.pdf, April 2001.

[19] B. H. Hall. Innovation and market value. In R. Barrell, G. Mason, and M. O’Mahoney, editors,
Productivity, Innovation and Economic Performance, pages 177-198. Cambridge University Press,
2000.

[20] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall, 1978.

{21] P. Klint. How understanding and restructuring differ from compiling—a rewriting perspective. In
Proceedings of the 11th International Workshop on Program Comprehension (IWPC03), pages 2—12.
IEEE Computer Society, 2003.

[22] P. Klint. Een patentoplossing? Nee, dank U! I/O Informaticaonderzoek, 1(2):3, September 2004.
(In Dutch), http://www.informaticaplatform.nl/images/uploaded/magazine_
2004_12_102t%otaal.pdf.

[23] D. Knuth. Letter to the US patent office. http://1pf.ai.mit.edu/Patents/
knuth-to-pto.txt, September 2003.

[24] C.Lening and J.R. Cavicchi. Patent searching glossary. Technical report, Franklin Pierce Law Centre,
2003. http://ipmall.info/hosted_resources/patent_searching_glossary.
pdf.

[25] P.E. Merrell, 2005. Private Communication.

22

[26] M. Murphy. Getty and corbis win image patent dispute. Seattle Post-Intelligencer http://
seattlepi.nwsource.com/business/227728_gettycorbis09.html,2005.

{27] J. Park. Evolution of industry knowledge in the public domain: Prior art searching for soft-
ware patents. SCRIPT-ed, 2(1), 2005. http://www.law.ed.ac.uk/ahrb/script-ed/
vol2-1/park.asp.

[28] R. Plotkin. From idea to action: toward a unified theory of software and the law. International Review
of Law, Computers & Technology, 17(3), November 2003.

[29] R. Plotkin. Computer programming and the automation of invention: a case for software patent
reform. Working Paper Series, Public Law & Legal Theory Working Paper 04-16, Boston University
School of Law, 2004.

{30] P. Samuelson. Should program algorithms be patented? Communications of the ACM, 33(8):23-27,
1990.

[31] 30 European Computer Scientists. Petition to the european parliament on the proposal for a directive
on the patentability of computer-implemented inventions. CEPIS UPGRADE The European Jour-
nal for the Information Professional, 1V(3):24-25, June 2003. http://www.upgrade-cepis.
org/issues/2003/3/upgrade-vIV-3.html.

[32] Software engineering body of knowledge (SWEBOK). http://www.swebok . org, 2004.

[33] 1.D. Ullman. Ordinary skill in the art. http://www-db.stanford.edu/ ullman/pub/
focs00.html, November 2000.

[34] United States Code (USC). Title 35, Section 101: Inventions patentable. http://caselaw. lp.
findlaw.com/scripts/ts_search.pl?title=35&sec=101,January 22 2002.

{35] H. van Vliet. Software Engineering: Principles and Practice. Wiley, second edition, 2000.

[36] World Trade Organization (WTO). Trips: Agreement on trade-related aspects of intellectual propery
rights, Section 5, Article 27: Patentable Subject Matter. http://www.wto.org/english/
tratop_e/trips_e/t_agm3c_e.htm.

23

Paradigm Shift in European Intellectual Property Law?
From Microsoft to Linux

Lex Electronica, vol. 10, no 3 (special issue 10th Anniversary), Fall 2005
http://www .lex-electronica.org/

Lucie GUIBAULT*

1. Open Source and CopYTight LaW........cccccevmrerenrnrennenrereneneseresseseestesessesssseestesaessessanees 3
1.1 FIEEAOIMN £0 USE....eneieeieieeeiee oot e sece e et rne st s e e ree s sot e e e e s ea e e s ae s mnesaesaanan 4
1.2 Freedom tO rEPIOAUCEooouereerecieeteneeeceee e e e st senressnsasnsssnesssaessesssnnesnsanassnns 8
1.3 Freedom tO MOIfY.....ccocvvieeiieiecrteererereeecteeteeecee e eee e et ee s es et e e e es s e sa e nseseenes 9
1.4 Freedom tO (TE)AISITDULEcoc.eeeveeeeeeiiieeeiiieeeseeireeieereeeresereeresostesesssssesessossarsrsossns 12
1.5 Royalty free diStriDULIONcccoveeeereiererereserrrereeeerseeeeeerseesnessesssesessseserssessssessessessens 16

2. Open Source and Patent Law.........c.coiiininiininiiiieeiiienienereteeesessesescesessasesassasesassaces 18
2.1. Open source and patented SOftWATEcoeuevemmtiiemniinieiiieieneneeeete e 20
2.2 Open source patenting SrAtEEYceeueeeerreereeermereraeesueeaserneseasareeesseensrsnseasasssresssnes 24
2.3 Open source licensing SLrAELYcccceeeeeeruecriererrenreneseeererseoseesesneerseesesssseeeensenons 26

3. Enforcement of Open SOUrce LICENCES........cciieriirriiiciriinieiiesiecreereeesseeseessnseesseesssssssenns 28
4. CONCIUSION «..ceeineiiesieeeeeeieeetesetreate s ce e et s sreesneseessae s aessseesnessaasssasssasseassesssasansassssrsns 31

Open source or free software' is actually as old as the software industry, but its use is
becoming more and more widespread among businesses, governments, and the public at
large. Open source software licences are based on two fundamental principles: the possibility
for users to use the software for any purpose and to modify and redistribute it without prior
authorisation from the initial developer. Some open source software licences, like the General
Public Licence (GPL), also impose a corollary obligation on the licensee: to make the source
code available to other developers.” The idea behind this form of licensing is that when
programmers can read, redistribute, and modify the source code for a piece of software, the
software evolves.” Perhaps more than any other type of software, open source software is, as
a result of its characteristic licensing scheme, the engine of collaborative creation. The very
fact that the software may be freely used, modified and redistributed encourages subsequent
developers to make their own contribution to an existing piece of software, by correcting
errors, or by enhancing the software’s capabilities and efficiency. Open source software may
be developed in a closed setting, but it may also consist of a patchwork of different
contributions originating successively from a number of unsupervised and unrelated
developers, who are often scattered across different locations in the world. The modifications
brought to the initial software can then either be distributed as a separate programme or be
integrated into the original software.

Within a few years, the ‘open’ method of development and distribution of computer programs
has imposed itself as a powerful social ideology. The philosophy behind open source
licensing has also inspired the development of numerous other ‘open’ licences and ‘open’
projects, where the principles of open source are applied in the fields of music, media,

* (LL.M. Montréal en LL.D. Amsterdam) Senior researcher at the Institute for Information Law (IViR) of the
University of Amsterdam (L.Guibault@uva.nl). This paper is adapted from O. van Daalen and L. Guibault,
Unravelling the Myth around Open Source Licences — An Analysis from a Dutch and European Perspective,
The Hague, T.M.C. Asser Press, forthcoming end 2005 or beginning 2006.

In this text, the expression “open source” software licences encompasses “free” software. For a distinction
between the two movements, sce: Richard Stallman, ‘The Free Software Definition’, at
http://www.gnu.org/philosophy/freesw.html.

Free Software Foundation Europe, http:/fsfeurope.org/documents/freesoftware.html.

Open Source Initiative, http://www.ossl.nl/opensource.org/

~

2 Paradigm Shift in European Intellectual Property Law?

encyclopaedia and science. The mechanism for achieving this goal is through a standardized
licensing infrastructure. The open source movement is so powerful in fact that even the
software giant Microsoft felt the pressure to offer open and royalty-free documentation and
licences for the Microsoft Office 2003 XML Reference Schemas, which provide developers
and representatives of business and government a standard way to store and exchange data
stored in documents.* Microsoft’s release of the Office 2003 XML Reference Schemas does
not qualify as ‘free’ or ‘open source’ software, for the accompanying licence does not grant
the user the required freedom to use, reproduce, modify and redistribute the software.
Nevertheless, Microsoft’s gesture does give an indication of the increasing pressure of
disclosing software standards within the community of software developers. Other important
‘proprietary’ software companies are slowly following Microsoft’s footsteps and disclosing
certain components of their products to the open source community.’

The use of open source software licences has given rise to new, viable, and attractive business
models for the distribution of software products. In view of its commercial potential,
established companies are investing important capital and labour resources in the
development of open source operating systems and applications. Open-source licences cover
thousands of projects, including the heart of the Linux operating system, the Firefox Web
browser, the Apache server software collection and soon, Sun Microsystems' Solaris version
of Unix. Open source software owes its attractiveness to the very principles put forward by its
proponents: software users and developers savour the political freedom granted under the
licence to use and modify the software as they wish.® The principles underlying the open
content movement have been embraced by a large and varied public worldwide, including in
the Netherlands, ranging from governments, to businesses, individual users and institutions.
To some extent, however, the open source ideology may be victim of its own success, for the
number of different open source licences has dramatically increased over the past couple of
years, giving to rise to compatibility and transparency problems.

The increasing popularity of open source software licences could be the indication of a
gradual paradigm-shift in the (use of the) law: from a strict protection regime for computer
software following the Microsoft model, the trend moves towards an open and permissive
form of protection, following the Linux model. While the protection computer software under
copyright and patent law is premised on the idea that the grant of exclusive rights actually
encourages creativity and innovation, the open source movement has emerged precisely in
reaction to the perceived failure of traditional intellectual property law to do just that. In the
opinion of the adherents to the open source software movement, protecting computer software
under copyright and patent law leads to a contrary result primarily because of the constant
expansion of intellectual property law and of the way rights holders license their rights to
users and subsequent developers. Open source software licences offer an alternative to the
traditional licensing model with the view of enabling access to computer information and of
encouraging further software development. The subject of the impact of the open source
software movement on law and practice appears particularly well suited for the Lex
Electronica’s tenth anniversary special issue in which authors are invited to explore various
trends with regard to the impact of new technologies on the Law. This paper therefore
presents the main elements of the most commonly used open source software licences,
focusing on the General Public Licence (GPL), the Berkeley Software Distribution (BSD) and
the Mozilla Public Licence (MPL), examined from a European and Dutch law perspective.

This paper is divided into three parts. Section 1 focuses on issues of copyright law. The open
source software ideology, far from rejecting the rules of copyright law, relies on the

4 ‘Microsoft geeft ontwikkelaars meer inzicht’, 8 February 2005, WebWereld, online:

http://www.webwereld.nl/nieuws/20737.phtml (visited October 13th 2005).
5 S. Shankland, ‘Adobe releases open-source interface software’, 2 March 2005, CNET News.com.
Pearson, H.E., ‘Open Source — The Death of Proprietary Systems?’, 3 Computer Law & Security Report
(2000), pp. 151-156, p. 152.

L. Guibault 3

application of these rules to set their own ‘open’ terms of use of protected software. The key
terms in open source software licences have been designed to take account of the fact that the
traditional distinction between creators and users of works has essentially vanished thanks to
the digital networked environment: users are creators and vice-versa. To accommodate the
incremental development of creative works, the licences grant users the freedom to use,
reproduce, modify the software, and the freedom to distribute or re-distribute the work. How
do these freedoms fit in with rules on copyright? Section 2 examines the implications of the
recognition of the patentability of software-implemented inventions for the development of
open source software. To this end, we consider the patent protection as it is currently granted
in Europe with respect to computer-implemented inventions. We also take a look at the
reaction of some open source software developers in order to counter potential patent
infringement claims from third parties. This includes the development of a patent strategy and
the drafting of specific language such as the one appearing inside the GPL, and the Mozilla
Public Licence. Section 3 takes a brief look at the enforcement of these licences. Finally,
section 4 sets out a number of concluding remarks on the emergence of a new paradigm for
the licensing of creative works.

1. Open Source and Copyright Law

Software developers across the European Union enjoy copyright protection on their programs
since the adoption, in May 1991, of the Directive 91/250/EEC on the legal protection of
computer programs.” As a result, all computer programs, whether in object code or in source
code,® are subject to copyright protection in Europe, provided that they meet the habitual
criterion of originality. Open source software does not differ in this respect from any other
proprietary software. Open source software does, however, depart from proprietary software
in the manner in which it is created and distributed to the public. The modes of creation and
distribution of open source software have emerged in reaction to those of proprietary
software, where the use of copyright law was seen as an impediment to the further
development of software.” Far from rejecting the rules of copyright law, the open source
movement relies on the application of these rules to set their own ‘open’ terms of use for
protected software. The key terms in open source licences have been designed to take account
of the fact that the traditional distinction between creators and users of software has
essentially vanished within the open source community: users are creators and vice versa. In
practice, the most widely used open source licences have been developed from an American
law perspective, which shows important differences with European copyright law. In order
for European users to be able to fully take part in the open source movement, it is paramount
that each software developer knows precisely what his rights and obligations are under the
law and the licence.

Since the adoption of the Computer programs directive, the right of reproduction is
considered to include the permanent or temporary reproduction of a computer program by any
means and in any form, in part or in whole. Given this very broad exclusive right of
reproduction, some limitations had to be introduced to allow the lawful user to execute certain
acts with respect to protected software without the former’s prior authorisation. Nevertheless,
most provisions in the national legislation concerning the use of computer programs are

Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer programs, OJ L 122
17.05.1991 p. 42 [hereafter the Computer programs directive].

Computer programs directive, recital 7, which reads as follows: “Whereas, for the purpose of this Directive,
the term ‘computer program’ shall include programs in any form, including those which are incorporated
into hardware; whereas this term also includes preparatory design work leading to the development of a
computer program provided that the nature of the preparatory work is such that a computer program can
result from it at a later stage”.

Azzaria, G., ‘Les logiciels libres a I’assaut du droit d’auteur’, 16 Les cahiers de propriété intellectuelle
(2004), pp. 405-428, p. 409.

4 Paradigm Shift in European Intellectual Property Law?

merely default rules from which contracting partners may derogate. In practice, copyright
owners usually grant users permission to accomplish certain acts with respect to their
copyright protected work by means of a licence. The main difference between open source
licences and proprietary software licences lies first and foremost in the freedoms that the
former type of licence grants to users and, in certain cases, in the corollary obligation to make
the source code available to fellow developers. As we will discuss below, the user of open
source software enjoys an extended freedom to use, reproduce, modify and (re)distribute the
software. In return, the licensee who undertakes to modify and redistribute new software
based on an open source program must agree, at least under the GPL, to renounce receiving
royalty payments for the use of the software. The following pages concentrate exclusively on
the distinctions shown between the terms of the GPL, the BSD, and the Mozilla licences and
the rules on copyright currently in force at the European level, as transposed into Dutch law.'

At the outset, it is important to note that, contrary to what is often asserted in the literature,
the freedom of use afforded under most open source licences does not, as such, entail a
waiver of right on the part of the “Rights Owner”. In our opinion, the grant of a permission to
execute certain acts with respect to a copyright protected work falls within the scope of the
“Rights Owner’s” exclusive right to authorise or prohibit the reproduction and
communication to the public of his work and must be distinguished from a waiver of right.
Admittedly, the line between a very broad licence to use a work and a waiver of right is in
practice hard to draw. This may explain the confusion in terminology found in the literature.
A waiver of right implies that the “Rights Owner” forsakes his right to exercise in the future
one or all of his exclusive prerogatives, with respect to one or more individuals."' If the
licensor waived his right of reproduction and communication to the public, there would
logically be no consequence attached to the non-respect of the conditions by the licensee.
However, by granting users the freedom to use, reproduce, modify and (re)distribute the open
source software, the licensor does not relinquish his right to institute infringement
proceedings should the licensee fail to honour the conditions set out in the licence. The failure
by the licensee to meet the requirements of the GPL, or the Mozilla Public licence regarding
the distribution of new versions of the software may result in the termination of the licence.
This, in our opinion, supports the qualification of the open source licence as a broad
permission, rather than a waiver of right."

1.1 Freedom to use

Traditionally, copyright owners have never held absolute control over the use of their works.
Everyone is in principle free to read, listen to, or view a work for his or her own learning or
enjoyment. In theory, copyright never protected against acts of consumption or reception of
information by individuals."? With the adoption of the Computer programs directive, this is no
longer true, however, with respect to computer software.'* In the case of software, the
execution of even the most trivial operation constitutes a restricted act, since it involves
making at least one temporary reproduction of the software in the RAM memory of the
computer. Article 45i of the Dutch Copyright Act 1912 indeed specifies that “without
prejudice to the provisions of article 13, the reproduction of a work as referred to in article 10,

' For a more exhaustive account of the legal protection of proprietary sofiware, we refer the reader to

Meijboom, A. in Prins, J.E.J. et al., Rechr en Informatietechnologie — Handboek voor Rechtspraktijk en
Beleid, (Den Haag, SdU Uitgevers 1999), pp. 7U/1- 7/36, pp. 7U/1- 71/36; and Verkade, D.W.F.,
‘Intellectuele Eigendom’, in H. Franken, H.W.K. Kaspersen and A.H. De Wild, Recht en computer, 5™ ed.,
(Deventer, Kluwer 2004), pp. 227-289, pp. 242-258.
' Spoor, .H., D.W.F. Verkade and D.J.G. Visser, Auteursrechrt, 3rd ed., (Deventer, Kluwer 2004), p. 552.
See: Clément Fontaine, M. La licence publique générale gnu [logiciel libre], (Montpellier, Mémoire de
D.E.A Droit des Créations Immatérielles. Université de Montpellier I, Faculté de Droit, 1999), online:
http://www.freescape.eu.org/biblio/IMG/pdf/gpl.pdf, § 59.
Guibault, LM.C.R., Copyright limitations and contracts. An analysis of the contractual overridability of
limitations on copyright (The Hague/ London/Boston: Kluwer Law International 2002), p. 48.
Jaeger, T. & A. Metzger, Open source software : Rechtliche Rahmenbedingungen der Freien Software,
(Miinchen, Verlag C.H. Beck, 2002), p. 21.

L. Guibault 5

paragraph 1, sub 12°, shall include the loading, displaying, running, transmission and storage,
in so far as these acts are necessary for the reproduction of the said work.” According to
recital 17 of the Computer programs directive however, the exclusive rights of the author to
prevent the unauthorized reproduction of his work must be subject to a limited exception in
the case of a computer program to allow the reproduction technically necessary for the use of
that program by the lawful acquirer. According to article 5(1) of the Computer programs
directive, in the absence of specific contractual provisions, the acts of reproduction referred to
in article 4a) and b) do not require authorization by the right holder where they are necessary
for the use of the computer program by the lawful acquirer in accordance with its intended
purpose, including for error correction. This provision has been incorporated into article 45j
of the Copyright Act 1912, which reads as follows:

‘Unless otherwise agreed, the reproduction of a work as referred to in article 10,
paragraph 1, sub 12° by the lawful acquirer of a copy of said work, where this is
necessary for the use of the work for its intended purpose, shall not be deemed an
infringement of copyright. Reproduction, as referred to in the first sentence, in
connection with loading, displaying or correcting errors cannot be prohibited by
contract.’

From the text of the directive and its implementing provision in the Dutch Copyright Act, it
follows that the minimum rights of use are conferred only to the ‘lawful acquirer’ of a
computer program. When is a person to be considered the ‘lawful acquirer’ of a computer
program? More importantly for our purpose, can the person who downloads or otherwise
obtains free of charge a copy of an open source program be seen as a ‘lawful acquirer’? How
must one interpret the ‘lawful’ character of the acquisition? Should the ‘lawfulness’ be
assessed in relation to the authorisation to use the software granted under licence by the
copyright holder, or in relation to the acquisition of the copy of the software, where the
lawfulness is considered from a property law perspective.”” In the first case, a user who
acquires in good faith an infringing copy of the software would not be considered a ‘lawful’
acquirer of the program in the sense of the Copyright Act, while it could be true in the second
case.

Van Schelven and Struik argue that, in view of the copyright dimension of the Computer
programs directive, the ‘lawfulness’ of the acquisition should logically be evaluated from the
perspective of the authorisation of the copyright holder rather than from a property law
perspective. As a logical consequence of this, it is also generally accepted that a subsequent
acquirer of the same copy of the software would be a ‘lawful acquirer’, even in the absence of
a licence, according to the doctrine of exhaustion of rights.'® In a preliminary ruling, the
district court of Zutphen (The Netherlands) confirmed this interpretation of the expression
‘lawful acquirer’."” The court ruled in this case that the simple fact that a copy of the program
had been obtained legally, i.e., without having been stolen, it did not imply that the acquirer
had the right to pose the acts of a ‘lawful acquirer’ in the sense of article 45j of the Copyright
Act. On appeal, the Court of Arnhem overruled the decision, arguing among other things that
since the software had been acquired in good faith the acquirer could be regarded as lawful
within the meaning of article 45j of the Act.'® This part of the court’s ruling received severe
criticism in the literature: first, the good faith character of the acquisition was irrelevant from

Van Schelven, P.C. and H. Struik, Softwarerecht : bescherming en gebruik van programmatuur sedert de
Richtlijn Softwarebescherming, (Deventer, Kluwer 1995), p. 79-82.

16 van Schelven and Struik 1995, supra note 15, p. 81; HR 25 January 1952, NJ 1952No. 95 (Leesportefeuille);
and HR 20 November 1987, NJ 1988No. 82, with annotation from Wichers Hoeth (Stemra/Free Record
Shop).

Arrondissementsrechtbank Zutphen, 29 April 1999 (Deurwaarders Software Services), Computerrecht
1999/4, § 9.19.

¥ Gerechtshof Arnhem 11 december 2001 (Blomsma/ Deurwaarders Software Services (DWSS) BV),
Computerrecht 2002/2, with annotation from E. Thole.

6 Paradigm Shift in European Intellectual Property Law?

a copyright law point of view, since infringement done in good faith is still an act of
infringement. Moreover, the appeals decision went against the majority opinion which
considers the ‘lawful acquirer’ solely to be the one who is authorised to use the software in
accordance with a purchase or licence contract from the copyright owner or his assignee.

The European Commission would seem to agree with the majority of opinion in the
Netherlands, which considers the ‘lawful acquirer’ to be the one who is authorised to use the
software in accordance with a purchase or licence contract from the copyright owner or his
assignee and not to be the one who legally obtained a copy of the program. In its report on the
implementation and effects of Directive 91/250/EEC on the legal protection of computer
programs, the European Commission observes that divergences of views subsist however as
to the meaning of ‘lawful acquirer’. Several Member States have transposed this notion by
using the term ‘lawful user’ i.e., a person having a right to use the program. The Commission
shares the view of some commentators that ‘lawful acquirer’ does in fact mean a purchaser,
licensee, renter or a person authorised to use the program on behalf of one of the above. This
argument also draws from Articles 6 and 8 of the Database Directive (Directive 96/9/EC)",
which use the term ‘lawful user’, and which were modelled along the lines of Article 5 (1) of
the Computer Programs Directive. In the view of the Commission, what was intended by
Article 5 (1) and recital 18 was that it should not be possible to prevent by contract a “lawful
acquirer” of a program doing any of the restricted acts that were required for the use of the
program in accordance with its intended purpose or for correcting errors. It is, however,
possible for a contract to include specific provisions that “control” the restricted acts, which
may be carried out by the user of the computer program.”

With this definition of a ‘lawful acquirer’ in mind, one could reasonably argue that anyone
having a licence to use an open source computer program is a ‘lawful acquirer’ of that
program within the meaning of the Copyright Act, provided that the licence accompanying
the product was validly entered into. Whether the user of the open source software obtained
the copy free of charge or not should make no difference, since the majority opinion considers
that the lawfulness of the acquisition should not be assessed from a property law perspective.
In other words, whether the transaction would qualify as a donation rather than a purchase is
irrelevant for the determination of when a user is a ‘lawful acquirer’ of open source software
pursuant to article 45j of the Act.

According to some commentators, a literal interpretation of article 45j of the Act would
suggest that a person who downloads an electronic version of the software instead of
acquiring a tangible copy of the same software could not be regarded as a lawful acquirer of
‘a copy’ of the software. As a result, the acquirer of a computer program downloaded from
the Internet would not be entitled to benefit from the minimum rights of use.?' In our opinion,
it cannot have been the intent of the legislator to limit the application of the provision
according to the medium upon which the software is distributed to the public. Arguably, at the
time the directive was adopted in 1991, neither the European legislator nor the national
legislators of the Member States may have been aware of the possibility to distribute software
on-line, as an economically viable mode of exploitation.22 Today, on-line distribution has

' Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the Legal Protection

of Databases, O.J. L 077, 27 March 1996, pp. 20-28.

Report from the Commission to the Council, the European Parliament and the Economic and Social
Committee on the implementation and effects of Directive 91/250/EEC on the legal protection of computer
programs, COM/2000/199 final, Brussels, April 10™ 2000, online: http://europa.eu.int/eur-
lex/lex/LexUriServ/site/en/com/2000/com2000_0199en01.pdf.

Koelman, K.J., “Brothers in arms: open source en auteursrecht”, S Computerrecht (2004), pp. 230-233, p.
230; Thole, E. and W. Seinen, ‘Open Source Software licenties: een civielrechtelijke analyse’, 5
Computerrecht (2004), pp. 221-225, p. 221; and M.W. Scheltema and E. Tjon Tjin Tai, “Overeenkomsten
sluiten door openen en klikken?”, 4 Computerrecht (2003) pp. 244-248, p. 248.

See: Proposal for a European Parliament and Council Directive on the harmonisation of certain aspects of
copyright and related rights in the Information Society, Explanatory Memorandum, December 1997, §

20

L. Guibault 7

become one of the most important modes of exploitation of both proprietary and open source
software, including for popular programs like Microsoft Windows and Linux. Such a
restrictive and technology dependent interpretation would, in our opinion, be inconsistent
with the more common interpretation of the provision according to which ‘lawful acquirer’
means the person who is authorised to use the program. From a practical point of view, this
interpretation would also frustrate the reasonable expectations of use of all licensees who
acquire software on-line, consequence, which can hardly be justified under the law.

Article 45j of the Dutch Copyright Act also implies that while “Rights Owner’s” may
contractually regulate the running, transmitting or storing of a computer program, they may
not prohibit lawful acquirers from performing such acts as the loading, displaying or
correcting of errors. The last sentence makes it clear that, in view of the unprecedented
expansion of the copyright protection, the Dutch legislator wanted to guarantee a minimum
right of the lawful acquirer of a copy of a computer program to perform those acts that are
necessary for the normal use of the computer program.” Apart from the limited acts of
loading, displaying, or correcting errors, a lawful acquirer may, however, only execute those
acts that are necessary for the use of the work for its intended purpose. When can an act be
deemed necessary for the use of the program for its intended purpose? Verkade notes on this
subject that the circular formulation of articles 45i and 45j is the result of a political
compromise and that it certainly cannot have been the intention of the legislator to include
any and all technically possible acts of reproduction within the scope of protection of the
“Rights Owner”.>* For Meijboom, the intended purpose of the software is a question of fact
that can be assessed in relation to the software’s nature, functionality, or capacity. The
decisive factor in establishing what the intended use of a particular program is consists in
looking at the common intention of the parties at the time they concluded the licensing
agreement.”> When the interpretation of the licence contract offers no concrete solution, the
intended purpose of the software can be estimated in function of the use that the average
purchaser could reasonably have expected to make of the software.”®

It is worth pointing out in this context that the Directive on copyright and neighbouring rights
in the information society”’ introduced a mandatory exception for temporary acts of
reproduction. Article 13a of the Copyright Act, which transposed this last provision into
Dutch law, provides that:

“The reproduction of a literary, scientific or artistic work does not include temporary
acts of reproduction which are transient or incidental and an integral and essential part
of a technological process and whose sole purpose is to enable: (a) a transmission in a
network between third parties by an intermediary, or (b) a lawful use, of a work or
other subject-matter to be made, and which have no independent economic
significance.”

IL.A.S, where the Commission writes: ‘The Computer Programs Directive, in its Article 4, however, only
protects “any form of distribution to the public" of computer programs, not expressly addressing its on-line
transmission over the networks. Indeed, at the time of adoption of the Directive the usual form of distribution
took place on the basis of floppy discs and not on-line’. And Meijboom, ‘The EC Directive on Software
Copyright Protection’, in Jongen, H.D.J. and A.P. Meijboom (eds.), Copyright Software Protection in the
EC, (Deventer, Kluwer Law and Taxation Publishers 1993), p. 11 where the author writes: “Usually,
software is transferred, in whole or part, from the medium on which it is supplied (diskette, tape, hard disk)
to the compuier’s memory in order to execute the program”.

2 Guibault 2002, supra note 13, p. 220.

2 Verkade 2004, supra note 10, p. 253.

Meijboom 1999, supra note 10, p. 71 - 25.

% Verkade 2004, supra note 10, p. 254.

Directive 2001/29/EC of the European Parliament and of the Council of 22 May 2001 on the harmonisation

of certain aspects of copyright and related rights in the information society, L 167, 22/06/2001, p 10-19

[hereafter InfoSoc directive].

8 Paradigm Shift in European Intellectual Property Law?

According to recital 50 of the InfoSoc directive, however, ‘such a harmonised legal protection
does not affect the specific provisions on protection provided for by Directive 91/250/EEC.
(...) Articles 5 and 6 of that Directive exclusively determine exceptions to the exclusive rights
applicable to computer programs.’ In other words, the temporary reproduction of any other
type of copyright protected work than computer software is excluded from the scope of the
“Rights Owner’s” exclusive right, provided that the conditions of application of article 13a of
the Act are met. As some commentators have argued, the Dutch legislator would have been
wise to review article 45i in the light of new article 13a of the Act in order to avoid any
possible ambiguity.?

Under Dutch copyright law, pure consumptive uses of computer programs such as loading,
displaying and correcting errors on the software cannot be prohibited by contract, even if they
technically fall under the scope of the owner’s exclusive right. However, the licensor is
allowed to contractually regulate the running, transmitting or storing of a computer program.
In this sense, open source licences grant users a much greater freedom of use than article 45j
of the Act. This is particularly evident from article 0 of the GPL, which specifies that
“Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.” The BSD licence states that redistribution and use in source and
binary forms, with or without modification, are permitted provided that certain conditions
regarding the redistribution of software are met. Similarly, article 2.1 of the Mozilla Public
Licence grants the user the following rights: “a world-wide, royalty-free, non-exclusive
license, subject to third party intellectual property claims: (a) under intellectual property
rights (other than patent or trademark) Licensable by Initial Developer to use, reproduce,
modify, display, perform, sublicense and distribute the Original Code (or portions thereof)
with or without Modifications, and/or as part of a Larger Work”.

Contrary to what article 5 of the GPL states, we believe that consumers should obtain a valid
licence for the use of the software. For, without a licence, consumers are in principle
restricted to the acts mentioned in the Copyright Act. For example, article 45j of the Act
permits a lawful acquirer to perform only those acts that are necessary for the use of the work
for its intended purpose, apart from the limited acts of loading, displaying, or correcting
errors. Moreover, even the making of private copies of software, let alone their distribution
among friends and family, is strictly prohibited under the law. The freedom of use and
reproduction granted under a typical open source licence is generally much broader than what
is allowed under copyright law, making the need to obtain a valid licence if not necessary at
least recommendable.

1.2 Freedom to reproduce

As soon as a user wants to do more with his software, than merely loading and displaying it
on his computer, he must as a matter of course make a reproduction of the program. This is
true not only for running, transmitting, or storing a computer program, but also for ensuring
its maintenance® and for translating or adapting it. Unless these acts are covered by a
limitation on copyright, the user is obligated to obtain permission from the rights holder prior
to making any kind of reproduction. The Dutch Copyright Act, on the model of the Computer

28

2 Kleve, P., Juridische iconen in het informatietijdperk, (Deventer, Kluwer 2004), p. 210.

Rb's—Gravenhage 23 April 2003, Computerrecht, 2004/5 (Faco Informatisering BV/ Haley Software BV), §
8.

L. Guibault 9

programs directive, grants the lawful user only limited rights to make unauthorised
reproductions of protected computer programs. Article 45k of the Act allows the lawful user
of a program to make a copy of that program to serve as a back-up copy, where this is
necessary for the use of the work for its intended purpose. The making of private copies of a
program is strictly prohibited under article 45n of the Copyright Act.® Article 451 states that a
person who is entitled to perform the acts referred to in article 45i shall also be entitled, while
performing them, to observe, study or test the functioning of the work concerned in order to
determine the ideas and principles underlying it. Article 45m permits the making of a copy of
a program and the translation of the form of its code, provided that these acts are
indispensable for obtaining information necessary to achieve the interoperability of an
independently created computer program with other programs, and provided that a number of
conditions are met. In the Explanatory Memorandum to the Implementation Act, the Dutch
government did indicate that the limitations on the exclusive right, such as those set out in
Articles 45k, 451, and 45m of the Act, were imperative. However, according to the
government, there was no need to specify this in the Act.** Although it would certainly have
been clearer to spell it out in the Act, the Dutch courts cannot ignore the mandatory character
of these provisions, since they too must interpret these provisions in compliance with the
directive.”® A great deal has been written concerning the scope of these limitations with
respect to proprietary software.*® Suffice to say, here, that the general limitations on the
owner’s exclusive rights, such as the right to quote and the right to use work for educational
purposes are also applicable with respect to the reproduction of a computer program.®®

In light of these provisions, it is clear that once again the GPL, the BSD, and the Mozilla
Public licence all offer the licensee much greater freedom to reproduce the computer
program, without restriction as to the number of copies realised or to the purpose for making
these copies. From the perspective of the licensor(s), these licences are valid, as “Rights
Owner’s” are entitled to licence their rights as they see fit. Nothing in the Dutch Copyright
Act prevents “Rights Owner’s” to license their rights broadly to a third party, whether on an
exclusive or non-exclusive basis, for a fee or for free. The only restrictions on the freedom of
contract of the “Rights Owner” would be set by the imperative character of the limitations
relating to the making of a back-up copy, of a reproduction for purposes of observing,
studying and testing the software, as well as to the decompilation of the program for purposes
of interoperability. These restrictions are irrelevant in the context of open source software,
since all types of open source licences grant the user much broader rights of use than the law
normally does.

1.3 Freedom to modify

Generally speaking, the right to modify, adapt, or transform a protected work falls under the
exclusive right of reproduction of the owner. This principle is derived from article 13 of the
Dutch Copyright Act, which provides that “the reproduction of a literary, scientific or artistic
work includes the translation, arrangement of music, cinematographic adaptation or
dramatization and generally any partial or total adaptation or imitation in a modified form,

3 According to Meijboom [1999, supra note 10, p. 71 — 28], the expression ‘lawful user’ should be understood

in the same terms as the expression ‘lawful acquirer’ since a person may only be a lawful user if he is a

lawful acquirer in the sense of articles 45i and 45j of the Act.

Report from the Commission to the Council, the European Parliament and the Economic and Social

Committee on the implementation and effects of Directive 91/250/EEC on the legal protection of computer

programs, COM/2000/0199 final.

D.W.F. Verkade, "Computerprogramma’s in de Auteurswet 1912: het vierde regime...", 3 Computerrecht

(2003), pp. 86-97, p. 95.

3 Guibault 2002, supra note 13, p. 218.

3 Verkade 2004, supra note 10, p. 252 et seq.; Meijboom 1999, supra note 10, p. 71— 18 et seq.

% Groenenboom, M.M., ‘Software licenties: van closed source tot open source’, 1 Computerrecht (2002), pp-
21-29,p. 22.

31

32

10 Paradigm Shift in European Intellectual Property Law?

which cannot be regarded as a new, original work”. The rights holder’s exclusive right of
reproduction entails more than just the right to authorise or prohibit the making of exact or
substantially similar copies. It also extends to the making of arrangements, adaptations, and
modifications to an existing work, otherwise called ‘derivative works’. Any arrangement,
adaptation, or modification of an existing work is subject to the prior authorisation of the
rights holder.*® With respect to computer programs, recital 20 of the Computer programs
directive states: “the unauthorized reproduction, translation, adaptation or transformation of
the form of the code in which a copy of a computer program has been made available
constitutes an infringement of the exclusive rights of the author”. Besides the generally
applicable limitations on copyright, such as the right to quote and to make reproductions for
purposes of research and private study, no specific limitation tempers article 45i of the
Copyright Act, with respect to the translation, adaptation, or transformation of software. In
other words, a computer program may not be translated, adapted, or transformed without the
rights holder’s prior authorisation. Moreover, proprietary licensing contracts are usually
adamant in requiring that the licensee refrain from bringing any modification to the software
without prior authorisation from the rights holder.

Perhaps more than the freedom to use or to reproduce a computer program, the freedom to
modify the software constitutes the cornerstone of the open source movement. As one can
read on the home page of the Open Source Initiative (OSI):

“The basic idea behind open source is very simple: When programmers can read,
redistribute, and modify the source code for a piece of software, the software evolves.
People improve it, people adapt it, people fix bugs. And this can happen at a speed
that, if one is used to the slow pace of conventional software development, seems
astonishing. We in the open source community have learned that this rapid
evolutionary process produces better software than the traditional closed model, in
which only a very few programmers can see the source and everybody else must
blindly use an opaque block of bits.”’

As a rule, users of open source software have, pursuant to the GPL, the BSD, or the MPL, the
right to modify the software and to prepare derivative works based upon the original work.
Indeed a particular computer program may be qualified as ‘open source software’ only if the
licence allows modifications and derivative works, and allows them to be distributed under
the same terms as the license of the original software. To facilitate the modification and the
evolution of computer programs, most open source licences require that the source code be
distributed along with the object code of the program, or that it at least be made available to
the public. Only by having access to the source code of an existing computer program, are
software developers in a position to build upon that existing program in order to improve it or
to develop compatible software.® Proprietary software manufacturers are usually very
protective of their source code, for it may embody competitive trade secrets, and only gives
users access to it in rare circumstances and then, only under controlled conditions.*® In the
same vain, proprietary software suppliers are generally highly reluctant to provide interested
parties with interface information. Without the proper interface information or the possibility
to decompile a program, computer programmers are absolutely unable to develop any kind of
software that is interoperable with existing software. At the time of the adoption of the
Computer programs directive, the question of whether the decompilation of a program should
be allowed led to heated debates. As a result, the directive contains a mandatory limitation
allowing under strict conditions lawful users to decompile a program for purposes of

36
37
38

Van Lingen, N., Auteursrecht in hoofdlijnen, 5™ ed., (Groningen, Martinus Nijhoff 2002), p. 77.

See <htip://www.opensource.org/>, site visited on 23 November 2004.

Guadamuz Gonzalez, A., “Viral Contracts Or Unenforceable Documents? Contractual Validity Of Copyleft
Licences’, E.I.P.R. (2004), pp. 331-339, p. 332.

* Hoeren, T., ‘Die Pflicht zur Uberlassung des Quellcodes’, 10 Computerrecht (2004), pp. 721-724, p. 721.

L. Guibault 11

interoperability, which the Dutch legislator has transposed in article 45m of the Copyright
Act®

According to article 3 of the GPL, for an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable code. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable code runs, unless that component
itself accompanies the executable code. If distribution of executable or object code is made by
offering access to copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source code along with the object code.

Decompilation of a program becomes no more than a useless intellectual challenge in the
context of open source software. The first principle laid down in the Open Source Definition
(OSD) holds that ‘the program must include source code, and must allow distribution in
source code as well as in a compiled form. Where some form of a product is not distributed
with source code, there must be a well-publicized means of obtaining the source code for no
more than a reasonable reproduction cost—preferably, downloading via the Internet without
charge. The source code must be the preferred form in which a programmer would modify the
program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the
output of a pre-processor or translator are not allowed.” The OSD’s second principle concerns
derivative works, whereby ‘the license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original software.” The
rationale behind this principle is that the mere ability to read the source code is not enough to
support independent peer review and rapid evolutionary selection. For rapid evolution to
happen, people need to be able to experiment with and redistribute modifications. What
constitutes a modification of an open source computer program must be evaluated, in the
same way as for any other type of work, according to the criterion of originality.

While neither the GPL nor the BSD licence gives any definition of what must be understood
by ‘modification’, the Mozilla license defines ‘modifications’ as follows: ‘any addition to or
deletion from the substance or structure of either the Original Code or any previous
Modifications. When Covered Code is released as a series of files, a Modification is: A. Any
addition to or deletion from the contents of a file containing Original Code or previous
Modifications. B. Any new file that contains any part of the Original Code or previous
Modifications.” Arguably, even if they do not expressly define it, the GPL and the BSD
licences should make reference to a similar notion of ‘modification’, presumably derived
from the American case law on the notion of ‘derivative works’.* The BSD and the Mozilla
licences grant the user comparable freedom to make modifications to existing open source
software. However, article 10 of the GPL warns the user that if he wishes to incorporate parts
of the licensed program into other free programs whose distribution conditions are different,
he must write to the author to ask for permission. In the case of software licensed by the Free
Software Foundation, exceptions can be made, each case being assessed following the double
objective of preserving the free status of all derivative works based on free software and of
promoting the sharing and reuse of software generally.

Van Lingen 2002, supra note 36, p. 62; De Cock Buning, M., ‘Auteursrecht en reverse engineering', 5 IER
(1993), p. 129-137, p. 129; and Meijboom in Jongen and Meijboom 1993, supra note 22, p. 14.

See Title 17 U.S.C. § 101, definition of ‘derivative work’: A "derivative work" is a work based upon one or
more pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion
picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which a
work may be recast, transformed, or adapted. A work consisting of editorial revisions, annotations,
elaborations, or other modifications, which, as a whole, represent an original work of authorship, is a
"derivative work".

41

12 Paradigm Shift in European Intellectual Property Law?

As we shall see in the next section, the freedom to modify open source software under all
types of licences is further accompanied by strict obligations as soon as the user wishes to
distribute software based on software originally distributed under an open source licence.

1.4 Freedom to (re)distribute

The freedom to redistribute copies of the software or to distribute a modified version of the
software is, just as the freedom to make modifications, one of the key features of any open
source licence. A particular computer program will fall under the Open Source Definition
only if it complies with the first principle laid down by the Open Source Initiative (OSI),
according to which the ‘license shall not restrict any party from selling or giving away the
software as a component of an aggregate software distribution containing programs from
several different sources.” As a rule, open source licences therefore afford users much greater
freedom than article 12 of the Copyright Act normally would with regard to the right to
distribute a copy of a copyright protected work, since the exclusive right of the rights holder
includes any form of distribution to the public, including the rental, of the original computer
program or copies thereof.*> The only exception to this rule is the one provided for in article
15b of the Act, which concerns the further communication to the public or the reproduction of
a literary, scientific or artistic work communicated to the public by or on behalf of the public
authorities. According to this provision, unless the copyright has been explicitly reserved,
either in a general manner by law, decree, or ordinance, or in a specific case by a notice on
the work itself or at the point of communication to the public, a work that is communicated by
or on behalf of the public authorities may be freely distributed. This exception would be
applicable for example in the case of software distributed by the government.

Under the three types of open source licences examined here, the exercise of this freedom is
accompanied by a number of strict conditions of application. The BSD licence states for
instance that redistributions of source code must retain the copyright notice, the list of
conditions and a disclaimer. Redistributions in binary form must reproduce the copyright
notice, the list of conditions and a disclaimer in the documentation and/or other materials
provided with the distribution.

As we have seen in the previous subsection, one of the main conditions under the GPL is that
the source code be distributed along with the program or that it be made available to any third
party who requests it. Article 2 of the GPL regulates essentially the same elements as the BSD
licence, i.e., the placement of a copyright notice, of a list of conditions and a disclaimer of
warranty and liability, but in much greater detail. As the GPL explains, “it is not the intent of
this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based
on the Program.” The GPL licence goes further than the BSD licence in that it requires the
user to cause any work that he or she distributes or publishes, that in whole or in part contains
or is derived from the program, to be licensed as a whole at no charge to all third parties
under the terms of the GPL License.

According to article 2 of the Mozilla licence, the initial developer grants the user a licence to
among other things distribute the original code (or portions thereof) with or without
modifications, and/or as part of a larger work. Article 3 of the Mozilla licence sets out
“distribution obligations”, which are comparable in length and complexity to those of the
GPL. The provision requires among other things that the user distribute any copy of the
software or any work derived from the original code only under the terms of this licence and
that a copy of the licence be included in the distribution. The user must also make any

42

Van Lingen 2002, supra note 36, p. 87.

L. Guibault 13

modification that he creates available in source code. He must also document the changes
made to the original software and duplicate the prescribed copyright notice.

In this sense, the GPL and the Mozilla licences follow the OSI’s foremost precept, according
to which “the rights attached to the program must apply to all to whom the program is
redistributed without the need for execution of an additional license by those parties”. This
clause, known as the ‘copyleft’ clause, is intended to forbid closing up software by indirect
means such as requiring a non-disclosure agreement. To this end, the distribution obligations
are placed not only on the initial licensee, but also on any subsequent licensee. In practice, the
‘copyleft’ clause varies in scope from one type of open source license to another and, as the
BSD licence demonstrates, not every type of open source licence contains such a clause.*

Under the GPL and the Mozilla licences, the copyleft clause is applicable to the distribution
of the original code with or without modification. In the case of the distribution of modified
code, the question can arise, however, whether the product involved actually does constitute a
‘derivative’ work based on the original work, or if it rather constitutes an entirely new work,
in the sense of article 13 last sentence, of the Dutch Copyright Act 1912.* For, if the new
software qualifies as a new work under the copyright act, the developer is in principle not
bound by the copyleft term of the licence. As McGowan rightfully observes, there are
problems with the proposition that a person creates a work derivative of a program just by
writing another program that interacts with it.** The last part of article 2 of the GPL does
specify the following:

“These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License”.

In the open source context, the discussion has focused essentially on the question of whether
static and dynamic linking to a computer program distributed under the GPL entail, as a
consequence, that the linking program must also be distributed under the GPL. The Free
Software Foundation (FSF) has adopted the position that both static and dynamic linking to a
computer programme may result in a “derivative” work.”® Whether other combinations of
code modules must also be regarded as an arrangement depends, according to the FSF, on the
communication mechanism and the semantics of the communication between the modules.

O’Sullivan, M., “The Pluralistic, Evolutionary, Quasi-legal Role of the GNU General Public Licence in

Free/Libre/Open Source Software (“FLOSS”)’, EIPR 2004, pp. 340-348, p. 343.
* Verkade 2004, supra note 10, p. 251.
$ See for example: McGowan, D., ‘Legal Aspects of Free and Open Source Software’, in J. Feller, B.
Fitzgerald, S. Hissam and K. Lakhani (ed.), Perspectives on Free and Open Source Software, (MIT Press,
Boston, MA, 2005), pp. 361-392, online: http://www.law.umn.edu/FacultyProfiles/articles/McGowanD-
OpenSource.rtf. (p. 23).
Free Software Foundation, <http://www.gnu.org/licenses/gpl-fag.htmi#MereAggregation>. Incidentally, this
rather broad interpretation of the term “derivative work” may have as a consequence that emulators like
Wine, which use the libraries of Windows to function, would infringe Microsoft’s copyright.

46

14 Paradigm Shift in European Intellectual Property Law?

The fact that modules are combined into the same file suggests that we are in presence of an
adaptation or an arrangement. If the modules are developed in order to be executed together
in a combined address location, we can speak of an adaptation or an arrangement. However,
collective communication mechanisms, which are normally used by two separate
programmes, will not easily be seen as an adaptation. On the other hand, whenever the
semantics of the communication are sufficiently “proximate”, one can conclude that an
adaptation has been realised. In all cases, the question of whether the new code forms a
derivative work or an entirely new work is a matter of fact that should be decided on a case-
by-case basis.

The copyleft clause may raise problems from the point of view of copyright law. A potential
problem concerns the application of the doctrine of exhaustion of rights. According to article
4c) of the Computer programs directive, “the first sale in the European Community of a copy
of a program by the right holder or with his consent exhausts the distribution right within the
Community of that copy, with the exception of the right to control further rental of the
program or a copy thereof”. As a consequence of this rule, the author of a work loses control
over the further dissemination of the copy after it has been made public by him or with his
consent. Therefore, selling, lending, leasing and hiring of a copy of a computer program by
the lawful acquirer cannot be prohibited.”’ The application of this doctrine has been
reaffirmed in slightly different words in article 4(2) of the InfoSoc Directive. This provision
states that “the distribution right shall not be exhausted within the Community in respect of
the original or copies of the work, except where the first sale or other transfer of ownership in
the Community of that object is made by the right holder or with his consent”. Does the
distribution of computer programs under the terms of an open source licence constitute a
‘sale’ in the sense of the Computer Programs Directive, which would have as a consequence
the effect of exhausting the distribution right of the rights holder? A corollary question to this
is whether the distribution of software free of charge entails a ‘transfer of ownership’, which
would lead to an exhaustion of right under Community law? Another corollary question is
whether, for the purposes of the exhaustion doctrine, there is a difference between the off-line
or on-line distribution of a ‘copy’ of a computer program.

Software manufacturers often maintain that the distribution right is not exhausted through the
grant of a licence of use of the software, because the licensing of rights does not constitute
“the first sale in the European Community of a copy of a program by the right holder or with
his consent”. This argument could be inferred from the wording of article 4c) of the Computer
programs directive, which would seem to limit the application of the exhaustion doctrine to
the ‘sale’ of a computer program, whereas any other form of distribution would not give rise
to the application of the doctrine.*® This theory has been, in our opinion, rightfully
contested.”” Along with Neppelenbroek, we believe that the exhaustion doctrine does not so
much focus on the concept of ‘sale’, but rather on that of ‘transfer of ownership’. As
Grosheide explains with respect to the general principle of exhaustion of rights: “it is not
limited to the first sale of the copy but encompasses other forms of distribution such as
donation and first rental. Exhaustion assumes assignment of title with regard to the copy (i.e.,
the content carrier).”*® This interpretation of the exhaustion doctrine would, in our opinion, be
more consistent with the interpretation of the doctrine as it is set out in other European

o Jongen, in Jongen and Meijboom 1993, supra note 22, p. 174. See HR 25 January 1952, NJ 1952No. 95
(Leesportefeuille); and HR 20 November 1987, NJ 1988No. 82, with annotation from Wichers Hoeth
(Stemra/Free Record Shop).

Van Schelven and Struik 1995, supra note 15, p. 70-71; and Grosheide, F.W., ‘Mass-market exploitation of
digital information by the use of shrink-wrap and click-wrap licenses’, in F.W. Grosheide & K. Boele-
Woelki (ed.), Opstellen over Internationale Transacties en Intellectuele Eigendom, (Lelystad, Koninklijke
Vermande 1998), Molengrafica Series, pp. 263-319, p. 308.

* Neppenlenbroek, E.D.C., ‘Software en de vitputtingsregel’, 6 AMI (2001), pp. 125-132, p. 126.

%0 Grosheide 1998, supra note 48, p. 307.

48

L. Guibault 15

Directives in the field of copyright. It follows from this that in any case, the mere labelling of
a transaction as a licence is insufficient as such to circumvent the exhaustion doctrine.

The question of whether the grant of a licence can amount to a sale or to another form of
distribution giving rise to the application of the exhaustion doctrine is a matter of fact that
should be decided on a case-by-case basis. In the Netherlands, opinions are divided on
whether the distribution to the public of a computer program on a tangible medium (i.e.,
floppy disc or CD-ROM) for an unlimited term and an outright fee is more akin to a sale than
a licence, understood in the strict meaning of the word. Such a transaction would entail, in our
opinion, a transfer of ownership of the physical embodiment of the work, which would lead to
the application of the exhaustion doctrine. In this sense, the court of appeal of The Hague
once ruled that the view, according to which the further distribution of the software can be
blocked through a clause prohibiting further transfers, would unduly restrict the working of
the exhaustion doctrine.”® In Germany, it is generally accepted that the distribution right is
exhausted as soon as a computer program is put into circulation following the terms of a
licence and against the payment of a one-time fee, a position that was confirmed by the
Federal Supreme Court in the OEM-Version case.” The situation would be different if the
licence to use the software was limited in time and if the licensee was obligated to
periodically pay a fee during the entire duration of the licence. In this case, there would be no
transfer of ownership of the physical embodiment of the work, and the distribution right of
the rights holder would not be exhausted. On the other hand, the licensing of a copy of the
software for an indefinite term, but free of charge, would probably qualify as a donation,
thereby implying a transfer of ownership of the physical embodiment of the work.”” As a
result, the distribution right of the rights holder would be exhausted as soon as a tangible copy
of the work is put into circulation, even if this occurs free of charge. As Spindler observes, the
application of the exhaustion doctrine does not depend on whether the copy of the work is
distributed for a price or free of charge. The important factor is that, through the granting of a
licence, the distributor operates a definitive transfer of ownership of the software in favour of
the licensee.>*

The above remarks concern the distribution of physical copies of computer programs, i.e., on
floppy discs, CD-ROM’s, and the like. To the question formulated above, of whether, for the
purposes of the exhaustion doctrine, a difference must be made between the off-line or on-line
distribution of a ‘copy’ of a computer program, the answer is yes. While the non-application
of the exhaustion doctrine to the electronic delivery of computer programs could already be
inferred from the wording of article 4¢ of the Computer programs directive, which refers only
to the “first sale in the European Community of a ‘copy’ of a program”, the question would
seem to have been resolved at the European level. According to Recital 29 of the InfoSoc
directive:

“The question of exhaustion does not arise in the case of services and on-line services
in particular. This also applies with regard to a material copy of a work or other
subject matter made by a user of such a service with the consent of the right holder.
Therefore, the same applies to rental and lending of the original and copies of works
or other subject matter, which are services by nature. Unlike CD-ROM or CD-I,
where the intellectual property is incorporated in a material medium, namely an item

' E.D.C. Neppelenbroek, annotation by Hof 's-Gravenhage 20 November 2003 (Ist Flight Training),

Computerrecht 2004/3.

52 BGH, 6 July 2000, I ZR 244/97 (OEM-Version), Computer und Recht 2000, p. 654; see also: Jaeger and
Metzger 2002, supra note 14, p. 22; and Spindler, G., Rechtsfragen der Open Source Software, (Gottingen,
Verband Sofiware Industrie 2003), available at: http://www.vsi.de/inhalte/aktuell/studie_final_safe.pdf., p.
48.

33 See Dutch Civil Code, art. 7:175.

3 Spindler 2003, supra note 52, p. 51, footnote 302.

16 Paradigm Shift in European Intellectual Property Law?

of goods, every on-line service is in fact an act which should be subject to
authorisation where the copyright or related right so provides.”

The notion that the electronic distribution of works does not give rise to the exhaustion
doctrine because it falls under the scope of the right of making a work available to the public,
rather than under the right of distribution, is now part of the acquis communautaire.” For
more certainty, the European Commission clearly stated, in its report on the implementation
of the Computer programs directive, that community exhaustion only applies to the sale of
copies, i.e., goods, whereas supply through on-line services does not entail exhaustion.”
Although this distinction may be unfortunate in the eyes of some commentators,”’ we will not
dwell on the issue any further. Nevertheless, it could be argued that the exhaustion doctrine
could apply to the tangible copy made from a digital version of a computer program
downloaded from the Internet. It would indeed not be unreasonable to think that, if the lawful
acquirer of an electronic version of computer program burned the software on a CD, he would
be able to transfer that specific CD to a third party without infringing the owner’s copyright,
provided that the initial copy of the programme is deleted from his computer.

In light of all this, let us now consider how the exhaustion doctrine applies in the case of an
open source licence. We will recall that, under the GPL and the Mozilla licences, the
‘distribution obligations’ are applicable to the distribution of the original code with or without
modification. One must realise at this point that the doctrine of exhaustion applies only to the
distribution right, not to the right of reproduction or to the right to distribute derivative
works.” The distribution right is therefore subject to exhaustion only in the case where the
original software is distributed on a tangible medium, i.e., on floppy discs or CD-ROM’s,
where the licence terms can be interpreted as operating a transfer of ownership in the software
and where the licensee further distributes exact and unmodified copies of that software. In
such circumstances, the ‘distribution’ obligations of the GPL, the BSD, or the Mozilla
Licence would not be binding upon the licensee. On the other hand, these obligations would
be binding upon the licensee whenever the open source software is delivered on-line, or when
the licensee creates and distributes a derivative work based on an open source computer
program. In practice, the exhaustion doctrine would come into play only in limited
circumstances, since the large majority of open source software is distributed over the Internet
and since a software developer has little interest in distributing exact copies of a program that
is otherwise freely available elsewhere. A computer programmer will be much more inclined
to put improved versions of the software into circulation. In that case, he must comply with
the requirements of the licence, namely to distribute the source code along with the object
code of the program, or at least to make it available to the public, to put the proper copyright
notices and, in the case of the GPL, to distribute the modified software under the same licence
terms.

1.5 Royalty free distribution

In addition to the threefold requirement mentioned above, open source licences generally
demand that the software developer, who wishes to distribute a modified version of the open
source software, agree not to require a royalty or other fee for the sale of open source
software. By imposing this requirement, the Open Source Initiative hopes that the temptation
to throw away many long-term gains in order to make a few short-term sales dollars will

* Walter, MM. (ed.), Europiiisches Urheberrecht — Kommentar, (Wien, New York, Springer Verlag 2001), p.

1053; and Neppelenbroek 2001, supra note 49, p. 127.

Report from the Commission to the Council, the European Parliament and the Economic and Social
Committee on the implementation and effects of Directive 91/250/EEC on the legal protection of computer
programs, COM/2000/0199 final.

Bolcher in Walter 2001, supra note 55, p. 171 and ff.; Tjon Tjin Tai, E., ‘Exhaustion and Online Delivery of
Digital Works’, EIPR (2003), pp. 207-210, p. 207.

8 Walter 2001, supra note 55, p. 1043.

56

57

L. Guibault 17

disappear.” Otherwise, the OSI fears that co-operators would find themselves under a lot of
pressure to defect from the open source movement in favour of more lucrative activities. In
practice, this condition means that the distribution of any software developed on the basis of
an open source programme must not be subject to the payment of a royalty fee.* Not all
licences contain this requirement. Whenever they do not, like the BSD and the Mozilla
licences, they are not regarded as falling under article 1 of the Open Source Definition which
states that ‘the license shall not require a royalty or other fee for such sale’. However, the
prohibition to charge royalties for the use of the software does not exclude the possibility of
charging a fee for other aspects of the distribution. Article 1 of the GPL stipulates, for
example, that “you may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.”

The obligation to license open source software free of charge raises little concern from a
copyright law perspective. Pursuant to the Dutch Copyright Act, an author may transfer his
exploitation rights in whole or in part; or grant them under licence, exclusive or non-
exclusive, for a fee or free of charge. Nothing in the Copyright Act precludes rights holders
from agreeing by contract not to ask for royalties for their copyright protected work.®" From
Microsoft to small software developers, the free distribution of software is in fact very
common.®> Most of all, the GPL does not prevent “Rights Owner’s” to make money, for
example by charging for support and for guarantee. As an illustration of this, the Linux
operating system is distributed, free of charge, over the Internet under the GPL terms.
However, for any user who feels unable to download the free version of the software from the
Internet and install it, potential users have the possibility of purchasing from several vendors a
boxed set with the Linux system. In this case, the cost of Linux system increases, but on the
other hand, the user will be provided with full documentation, step-by-step installation
instructions and in many cases free technical support for up to 90 days by phone or e-mail.®

While the obligation to distribute software on a royalty free basis would probably pose no
difficulty from a copyright law point of view, such an agreement may, in certain
circumstances, raise competition law concerns. A first concern relates to the obligation of
open source licensees to distribute the software free of charge. It has been suggested that this
practice could, in certain circumstances, be regarded as an unlawful imposition of a vertical
restraint in the form of resale price maintenance, contrary to article 6 of the Dutch
Competition Act or article 81(1) of the European Union Treaty.* Both provisions prohibit all
agreements between undertakings, which have as their object or effect the prevention,
restriction, or distortion of competition within the common market, including agreements that
directly or indirectly fix purchase or selling prices. However, a restrictive agreement may still
be allowed, under article 6(3) of the Dutch Competition Act and article 81(3) of the European
Treaty, if it contributes to improving the production or distribution of goods or to promoting
technical or economic progress, while allowing consumers a fair share of the resulting benefit,
and which does not: (a) impose on the undertakings concerned restrictions which are not
indispensable to the attainment of these objectives; (b) afford such undertakings the
possibility of eliminating competition in respect of a substantial part of the products in
question.

In the case of open source software distributed under the GPL, it could be argued that it is
precisely this obligation of distributing software on a royalty free basis that ensures that the

9 See <http://www.opensource.org/docs/definition.php>, site visited on 2 December 2004.

% Gonzalez 2004, supra note 38, p. 333.

¢ Spindler 2003, supra note 52, p. 48.

62 Microsoft Corp (COMP/C-3/37.792) (Unreported, March 24, 2004) (CEC).

8 See: Linux website, Download Information, at <http://www.linux.org/dist/download_info.html> (site visited
on 21 October 2004.

Koch, F.A., ‘Urheber- und kartellrechtliche Aspekte der Nutzung von Open-Source-Software’, 6 Computer
und rechr (2000), pp. 333-344, p. 341.

18 Paradigm Shift in European Intellectual Property Law?

open source community has the incentive to produce and distribute improved software, which
is certainly to the advantage of the consumers. In other words, this argument would probably
fail in our opinion, because the restrictive clause would likely pass the test of article 6(3) of
the Dutch Competition Act and article 81(3) of the European Treaty. The distribution on a
royalty-free basis would probably also be able to benefit from the apphcatlon of the Block
Exemption on technology transfer agreements®, which allows setting maximum prices under
certain conditions.

The obligation to distribute open source software on a royalty free basis could also be seen as
an abuse of dominant position arising from the predatory pricing on the part of the licensor,*
contrary to article 24 of the Dutch Competition Act or article 82 of the European Union
Treaty. Generally speaking, predatory pricing occurs, inter alia, where a dominant firm sells a
good or service below cost for a sustained period of time, with the intention of deterring
entry, or putting a rival out of business, enabling the dominant firm to further increase its
market power and later its accumulated profits.®’ To amount to an abuse of dominant position
under article 24 of the Dutch Competition Act,®® two conditions must be met: first, the
undertaking must occupy a dominant position in the market or a substantial part thereof;
second, the undertaking must abuse its dominant position. Currently, hardly any open source
project would meet these two conditions. Although this should be confirmed by exact figures,
none of the open source projects has to our knowledge reached the degree of market share
necessary to be in the presence of a dominant position, even if certain software is very
successful on specific markets. Moreover, the open source software having the biggest market
share is not necessarily the one distributed under the GPL, but it is often software distributed
under the BSD, the Mozilla Public Licence or any of their variant which does not contain
such an obligation to distribute open source software on a royalty-free basis. In addition, the
evidence of an abuse of dominant position arising from predatory pricing would be very
difficult to establish since this obligation is part of an ideological movement, aimed at
improving technological progress and not at eliminating the competition. Finally, the
obligation to refrain from asking for royalties does not prevent companies, like Red Hat and
SuSe, to charge the small and medlum-51zed business market substantial sums of money for
the support of the Linux server.”” Far from representing a form of predatory pricing, these
high prices may come with consequences, especially in a market where free alternatives are
available for those who don't want as much support, software updates and certification as Red
Hat offers. Competition is alive and well, also in the open source market!

2. Open Source and Patent Law

The grant of patent protection with respect to computer programs has been a problematic
issue worldwide for well over two decades. In the United States, the United States Patents and
Trademark Office (USPTO) and the courts were initially very hesitant to grant patents with
respect to software, since software was considered equivalent to mathematical algorithms or

% Commission Regulation (EC) No. 772/2004 of 27 April 2004 on the application of Article 81(3) of the

Treaty to categories of technology transfer agreements, Official Journal L 123, 27.04.2004, pages 11-17, art.
4(1).

Heath, C., ‘Open Source Software: Law, Politics and Economics’, 1 Journal of Digital Property Law (2002),
pp. 216-252, p. 251.

7 Case C-62/86 AKZO Chemie BV v Commission.

% Anicle 82 of the Treaty establishing the European Community states that: ‘Any abuse by one or more
undertakings of a dominant position within the common market or in a substantial part of it shall be
prohibited as incompatible with the common market in so far as it may affect trade between Member States’.
Stephen Shankland, ‘Dell: Red Hat needs to lower prices’, CNET News.com, 7 December 2004, available at
<http://news.com.com/Dell+Red+Hat+needs+to+lower+prices/2100-7344_3-5482234.html?tag=cd.top>.

66

69

L. Guibault 19

laws of nature, and thus not patentable.”” A Supreme Court ruling in 1981 drastically changed
software patenting in the United States. It held that, while software in isolation remained
unpatentable, software innovations were patentable if they were claimed as part of a
process.”' The 1990’s were marked by two important rulings from the Court of Appeals for
the Federal Circuit,”> which effectively extended the patent protection to cover software and
business methods. Today, patents are granted regularly in the United States with respect to
software, provided that the invention produces a ‘concrete, useful and tangible’ result and that
it is new and non-obvious.”

In Europe, patent protection is granted pursuant to article 52(1) of the European Patent
Convention (EPC) for any inventions, which are susceptible of industrial application, which
are new and which involve an inventive step.’* Although the EPC does not expressly require
it, the constant practice of the European Patent Office (EPQO) has also been to grant a patent
only if the claimed subject-matter, considered as a whole, has a technical character.”” While
‘programs for computers’ are included in the list of items that are not regarded as inventions
within the meaning of the Convention, if the claimed subject-matter has a technical character,
it is not excluded from patentability. Accordingly, the EPO has issued over the years an
estimated 30,000 patents relating to computer-implemented inventions and a considerable
body of case law on the subject has been built up by the appellate bodies of the EPO and the
Member States’ courts. It is important to point out that the EPC is entirely separate from the
European Community and the EPO is not subject to Community law. Granted European
patents form a ‘bundle’ of national patents which have to be validated, maintained and
litigated separately in each Member State. The patent holder in any case obtains, for a period
twenty years from the date of filing of the application, the exclusive right to make, use, put on
the market or resell, hire out or deliver the patented invention, or otherwise deal in it
commercially, or to offer, import or stock it for any of those purposes. Even more than
copyrights, patent rights have the potential to confer on their owner a degree of monopoly
power in the market. Patents therefore constitute a significant economic instrument in the
competition process.

The appropriateness of granting to software-implemented inventions the same level of
protection as other types of inventions is a hotly debated topic, namely in view of the very
particular mode of development of software and in view of the fact that software also benefits
from copyright protection.”® The controversy is in fact so strong that the recent efforts of the
European legislator towards the adoption of a European directive on the patentability of
computer-implemented inventions have until now remained unsuccessful.”’ Indeed, because
the rules regarding the patentability of computer-implemented inventions and the
interpretation of patent claims differ among the EU Member States, the European
Commission has proposed the text of a directive intended to set clear borders to what would
be patentable in the EU and what would not. While the European Commission argues that the
harmonisation of the patent rules regarding computer-related inventions is necessary to
remedy the current lack of legal certainty in the field, opponents maintain that the proposed

" Gornschalk v. Benson, 409 U.S. 63 (1972); and Evans, D.S. & A. Layne-Farrar, “Software Patents And Open

Source: The Battle Over Intellectual Property Rights”, 9 Virginia Journal of Law & Technology (2004), pp.
10-38, § 8.
"' Diamond v. Diehr, 450 U.S. 175, 186 (1981)
In re Allapat 33 F.3d 1526 (Fed. Cir. 1994); State Street Bank and Trust Co. v. Signature Financial Group
Inc. 149 F.3d. 1368 (Fed. Cir. 1998).

Bakels, R.B. & P.B. Hugenholtiz, The patentability of computer programs, study commissioned by the
European Parliament (Amsterdam, Institute for Information Law, April 2002), p. 13.

European Patent Convention, art. 52(1).

Guidelines for Examination in the EPO, C-1V, § 2.3.

76 See: Evans and Layne-Farrar 2004, supra note 70, § 8.

7 Proposal for a Directive of the European Parliament and of the Council on the Patentability of Computer-
implemented Inventions, Brussels, 20.02.2002 COM(2002) 92 final 2002/0047 (COD).

73

74

20 Paradigm Shift in European Intellectual Property Law?

directive may not only fail to achieve its intended objective, but may also have undesirable
effect on software development.”

Open source software developers have consistently taken the position that software patents
generally impede innovation in software development and that software patents are
inconsistent with open source software ideology. The implications of the current patenting
practice for the open source movement became very clear during the summer of 2004, when
the news circulated that the Linux kernel could be infringing an estimated 283 patents world-
wide, and 50 patents in Europe alone.”” Soon after the results of the Open Source Risk
Management (OSRM) survey were disclosed, the city of Munich announced that it would halt
its 13,000-desktop migration to Linux in order to investigate whether software patent laws in
the EU could impact the city’s use of the open source operating system.* In the light of this
incident, we will examine in the first subsection the implications of the recognition of the
patentability of software-implemented inventions for the development of open source
software, without however, putting the entire patent system into question. To this end, we
briefly consider the patent protection as it is currently granted in the Netherlands with respect
to computer-implemented inventions. We then take a look at the reaction of some open
source software developers in order to counter potential patent infringement claims from third
parties. This includes the development of a patent strategy and the drafting of specific
language such as the one appearing inside the GPL, and the Mozilla Public Licence.

2.1. Open source and patented software

With respect to the Netherlands, an inventor, or his assignee, may apply for a purely national
patent to be issued pursuant to the Dutch Patent Act of 1995, or may choose to designate the
Netherlands, as one of the territories for which patent protection is sought, to be issued as part
of a bundle of national patents pursuant to the European Patent Convention. While the Dutch
and the European patent regimes both impose similar substantive requirements, there exists a
significant difference in their application and issuance procedures. The Dutch patent regime is
generally referred to as a ‘registration system’, where a patent is granted as soon as the formal
requirements are met, irrespective of whether the invention also meets the substantive criteria
for patentability, such as novelty, inventivity and industrial application. Contrary to the
European patent system, where the patentability of an invention is evaluated ex ante by the
patent examiner in the course of the application procedure, the validity of a Dutch patent is
assessed ex post by the judge, in the context of an infringement or an invalidation procedure.
The Dutch Patent Act does require the production of a novelty search conducted by the Office
for the Industrial Property (BIE) prior to the start of any infringement or invalidation
proceeding. At the time of its implementation, the Dutch ‘registration system’ was believed to
be simpler and more accessible to small and medium enterprises (SME’s), than an
‘examination patent system’ like the European patent system. Whether this system has
yielded the expected advantages is a question, which reaches far beyond the scope of this
study.’’ The fact remains, however, that open source software developers must, in their
developing process, take account of the possible existence of potentially conflicting patents
on related computer-implemented inventions, whether issued under the Dutch or EPC patent
system, and which their owners will undeniably want to enforce.

Let us briefly consider the workings of the difficulties posed to open source software
developers under the current legal framework as well as under the proposed directive. Given

78

7 Bakels and Hugenholtz 2002, supra note 73, p. 43.

Steven J. Vaughan-Nichols, ‘Open-Source Insurance Provider Finds Patent Risks in Linux’, eWeek, August
2, 2004, available at:<http://www.eweek.com/article2/0,1759,1630082,00.asp>.

80 Linux Business Week News Desk, ‘Concerned Over Patent Infringement, Munich Calls Halt to Linux
Switch’, LinuxWorld, August 5, 2004, available at <http://www.linuxworld.com/story/45825.htm>.

81 SeeD.van Engelen, ‘Het Nederlandse registratieoctrooi: een wolf in schaapskleren!’, IER 2004/1.

L. Guibault 21

the fact that the substantive requirements of the Dutch and European patent systems are fairly
comparable, we will refer below primarily to the provisions of the EPC and to the case law of
the EPO, since it is more extensive on this subject than the purely national jurisprudence.
With respect to the scope of protection granted, we will refer to the Dutch Patent Act since
article 64 of the European Patent Convention refers directly to the national legislation on this
issue.

An invention can be a process, a machine, a product, or a composition of matter. In order to
be patentable under the EPC, an invention must have a technical character. In particular, this
requirement is not met if the patent application or the patent relates to mathematical methods,
rules and methods for performing mental acts or doing business, presentation of information
or computer programs as such. Assuming that a patent application is formulated so as to avoid
claiming rights on a program for a computer ‘as such’, which would fall under the exclusion
of article 52(2) of the EPC, the invention must also be susceptible of industrial application, be
new, and involve an inventive step.*” An invention is considered new if it does not form part
of the state of the art. The state of the art comprises of everything made available to the public
by means of a written or oral description, by use, or in any other way, before the date of filing
of the European patent application, including pending patent applications (published or not)
as well as any published innovations in industry or academic journals. An invention is
considered as involving an inventive step if, having regard to the state of the art, it is not
obvious to a person skilled in the art.* If the state of the art also includes patent applications
that were filed prior to the date referred to in the application but which were published on or
after that date, these documents are not to be considered when deciding whether there has
been an inventive step. With respect to the evaluation of the technical character of a
computer-implemented invention, the Guidelines for Examination in the EPO give patent
examiners the following instructions:

‘If a claimed invention does not have a prima facie technical character, it should be
rejected under Art. 52(2) and (3). In the practice of examining computer-implemented
inventions, however, it may be more appropriate for the examiner to proceed directly
to the questions of novelty and inventive step, without considering beforehand the
question of technical character. In assessing whether there is an inventive step, the
examiner must establish an objective technical problem, which has been overcome.
The solution of that problem constitutes the invention's technical contribution to the
art. The presence of such a technical contribution establishes that the claimed subject-
matter has a technical character and therefore is indeed an invention within the
meaning of Art. 52(1). If no such objective technical problem is found, the claimed
subject-matter does not satisfy at least the requirement for an inventive step because
there car}Mbe no technical contribution to the art, and the claim is to be rejected on this
ground.’

European patents have been granted with respect to all kinds of computer-implemented
inventions, ranging from an activated anti-blocking-system (ABS), to a road-pricing system, a
voice-recognition system, a data-compression (MP3) system, and a biometrical identification
and access control system, to name but a few examples.85 Most of these patents relate to a
new process or machine. In practice, the requirement of a ‘technical effect’ has proved to be
rather ambiguous and difficult to apply. The interpretation of the substantive criteria of
‘technical effect’, novelty, and inventiveness of computer-implemented inventions has led to

82

6 Bakels and Hugenholtz 2002, supra note 73, p. 8.

European Patent Convention, art. 56.

8 Guidelines for Examination in the EPO, C-IV, § 2.3.

8 Tauchert, W., ‘Software-Patente und computerimplementierte Erfindungen’, JurPC Web-Dok. 6/2005, §§ 4-
8.

22 Paradigm Shift in European Intellectual Property Law?

a considerable body of case law from the appellate bodies of the EPO.* Over the years, the
EPO has generally taken the position that the technical character of a computer-implemented
invention cannot be acknowledged for the sole reason that a program causes physical
modifications of the hardware (i.e., electrical currents) deriving from the execution of the
program instructions. A technical character might however be found in further effects
deriving from the execution by the hardware of the instructions given by the computer
program. Where these further effects have a technical character or where they cause the
software to solve a technical problem, an invention that brings about such an effect might be
considered the subject-matter of a patent under the EPC.* In some commentators’ opinion,
the criterion of the ‘technical effect’ has been interpreted rather loosely, while at the same
time, the exclusion of article 52(2) EPC has been interpreted rather restrictively.® This, in
combination to a poorly accessible body of prior art in the field of computer-implemented
inventions, leads in turn to the grant of what some commentators refer to as ‘trivial patents’.*’
This problem, however, is not unique to patents on computer-implemented inventions.

Leaving the complex issue of the patentability of computer-implemented inventions to the
appreciation of more expert scholars, let us concentrate here on the implications of granting
patents on such inventions for the development of open source software. As mentioned
previously, the open source community has consistently maintained that software patents are
incompatible with the open source ideology. The foundation of the open source development
model lies on the possibility for developers to share parts of the source code and to use the
source code in one’s own work. This freedom is severely curtailed whenever a new piece of
code ends up fulfilling the same function as that of a patented invention. In such
circumstances, the manufacturing, use, and distribution of the potentially infringing code
would be impossible without the patent holder’s authorisation, a requirement that goes against
the philosophy of the open source development model. The open source community argues
that patenting software would reduce the overall level of innovation in the field and may lead
to a monopolisation of standards.*

Unlike copyright protection, patent law generally protects the functionality of a computer
program and not its expression. By conferring on its owner the exclusive right to
manufacture, use, sell, and distribute the patented invention, the existence of a patent actually
prevents any other computer programmer from independently developing a piece of software
with a comparable functionality, even if the new software does not reproduce the lines of
code of the patented software.”’ Moreover, several European national courts, including the
Dutch Supreme Court, have recognised the general applicability of the doctrine of
equivalents. This doctrine states that an element (‘the equivalent element’) can generally be
considered as being equivalent to an element as expressed in a patent claim if, at the time of
any alleged infringement, either of the following conditions is fulfilled in regard to the
invention as claimed: 1) substantially the same function in substantially the same way and
produces substantially the same result as the element as expressed in the claim; or 2) it is
obvious to a person skilled in the art that the same result as that achieved by means of the

% Sec SedImaier, R. and J. Gigerich, ‘Rechtliche Bedingungen und Risiken der Landeshauptstadt Miinchen fiir

den Einsatz von Open-Source Software’, JurPC Web-Dok. 10/2005, § 80 and ff.; Case Law of the Boards of
Appeal of the European Patent Office, Fourth Edition, Munich, EPO, 2002, § 1.1, pp. 2-6; and Singer, M.
and D. Stauder, European Patent Convention — A Commentary, 3" ed., (London, Sweet & Maxwell 2003), p-
73 and ff.; and the classic cases: T208/84, O.J.E.P.O. 1987, 14 (VICOM); T26/86, O.J.E.P.0O. 1988 No. 19
(Koch & Sterzel); T169/92, O.J.E.P.0. 1995No. 525 (SOHEI).

See T935/97 and T1173/97, O.J.E.P.0. 1999 No. 609 (IBM patents); T 931/95, OJ 10/2001 No. 441.
Verkade 2004, supra note 10, p. 239,

Tauchert 2005, supra note 85, § 45. The argument of ‘trivial patents’ is particularly strong in the United
States, see: Evans and Layne-Farrar 2004, supra note 70, § 25.

Valgaeren, E., ‘Open source-code en octrooien — van copyleft naar patentleft?’, 5 Computerrecht (2004), pp.
233-237, p. 234,

Engelfriet, A., ‘Open source software en octrooien: een moeilijke combinatie’, 5 BIE (2003), pp. 204-208, p.
206.

87

88

89

90

91

L. Guibault 23

element as expressed in the claim can be achieved by means of the equivalent element.
Although this doctrine has yet to be applied in Europe to computer-implemented inventions, a
computer programmer would not, according to this theory, be able to ‘invent around’ a patent,
if the resulting computer code fulfilled substantially the same function in substantially the
same way and produces substantially the same result as the patented invention.**

Since the core of the patent protection relates to the functionality of an invention, some
commentators have maintained that, for the purposes of software development, a distinction
should be made between object code and source code.” If the patent claim relates to a product
or a machine, article 53(1)(a) of the Dutch Patent Act grants its owner the exclusive right to
prohibit anyone from making, using, putting on the market or reselling, hiring out or
delivering the patented product, or otherwise dealing in it commercially. A patented machine
or product embodying software can only be infringed when the object code, not source code,
is loaded into the memory of a computer to produce an equivalent functionality. If the patent
claim relates to a process, article 53(1)(b) of the Dutch Patent Act grants its owner the
exclusive right to prohibit anyone from using the patented process in or for his business or to
use, put on the market, or resell, hire out or deliver the product obtained directly as a result of
the use of the patented process, or otherwise deal in it commercially. Since the process patent
primarily protects inventive technical methods, the prohibition right does not cover the
production of a product, but rather the ‘application’ of the patented invention and the
‘offering’ for application of the invention.** As the authors Sedlmaier and Gigerich explain:

‘Das Programmieren von Software birgt stets das Risiko einer Patentverletzung. Die
Gefahr einer Patentverletzung bezieht sich dabei aber weniger auf die Designstruktur
oder die Kodierung selbst, als auf die Programmarchitektur und Funktionalitit des
jeweiligen Computerprogramms.’®®

In other words, the use, study, copy, or modification of the source code embodied in a
computer-readable medium can hardly infringe a patent on a computer-implemented
invention. The use of a patented computer-implemented invention in the development of new
software also brings up the issue of interoperability. It could be argued that, since article 53(1)
of the Patent Act does not prevent natural or legal persons from using a patented invention
purely for internal or private research purposes, developers are in principle free to reverse
engineer a computer program for purposes of interoperability or otherwise, without the patent
holder’s authorisation. In this sense, the patent rules appear more flexible than the copyright
rules on the subject. However, just as with copyright law, the private or internal use of a
patented invention must not pursue commercial objectives.”® The question is whether the
resulting interoperable computer-implemented invention or software infringes the patented
invention once it is put on the market. The answer, in our opinion, is a matter of factual
appreciation,

The chance that a particular piece of code unwittingly infringes a patent is not purely
theoretical.”” The risk for a software developer of being involved in a patent infringement
lawsuit and of having to start the development process from scratch is especially acute for
small software firms or freelance developers who rarely have the sufficient resources to hire a
patent lawyer to conduct a search prior to the development of new software. Of course, the
fear of having to pay high damages as a result of a patent infringement suit may also play an

2 HR, 2 November 2001, BIE 2003/30 (Kabelgeleidingsbuis); HR, 29 March 2002, BIE , 2003, No. 14, blz. 99
(Van Bentum/Kool).

Lin, D., Sag, M. and R.S. Laurie, ‘Source Code versus Object Code: Patent Implications for the Open Source
Community’, 18 Santa Clara Computer & High Tech. L.J. (2002), pp. 235-254, p. 235.

Sedlmaier and Gigerich 2005, supra note 86, § 166; Jaeger and Metzger 2002, supra note 14, p. 119.
Sedlmaier and Gigerich 2005, supra note 86, § 148.

Jaeger and Metzger 2002, supra note 14, p. 117.

Engelfriet 2003, supra note 91, p. 207; Jaeger and Metzger 2002, supra note 14, p. 113.

93

94
95
96
97

24 Paradigm Shift in European Intellectual Property Law?

important role in the software development process.” Contrary to most commentators
however,” we believe that the risk of facing an infringement lawsuit may be greater for open
source software developers than for developers of proprietary software, insofar as the
disclosure of the source code that is typical for any open source project makes the detection of
possible infringement much easier than would otherwise be the case. Nevertheless, the
uncertainty comes above all from the fact that the law is still unclear on the patentability of
computer-implemented inventions and that the quality of the patents delivered by the EPO or
the national patent offices of the Member States often leaves something to be desired.'®

2.2 Open source patenting strategy

Whether or not the European legislator will one day harmonise the rules on the patentability
of computer-related inventions, the reality is that patents are actually being granted with
respect to computer-implemented inventions both at the European and at national levels. Part
of this reality is also that a relatively small number of very large companies hold the vast
majority of patents issued with respect to computer-implemented inventions.'” This means
that, in order to avoid infringing another company’s patent, (open source) software developers
may be forced to obtain a licence on a patented invention before they can pursue their own
development activities. Although no generalisation should be made in this regard, it may
happen in practice that large companies will build-up impressive patent portfolios for
strategic reasons, in order to gain leverage in cross-licensing negotiations. Patents may be
used in an aggressive manner to fight competition by means of patents rather than by
performance. Patents are said to be used in a ‘strategic’ way if the owner employs his patents
merely to prevent competitors from using the invention, rather than to exploit the invention
himself. In a broader sense, strategic use of patents could also be considered to include other
actions specifically targeted at the obstruction of competitors.'” As a result, smaller
businesses and individual freelance developers could be prevented from entering the market
and from innovating further.'®

In the context of open source software development, the fear of unwittingly infringing another
company’s patent by one’s own developing activities is only as strong as the fear of
incorporating another contributor’s infringing code into a collective work. In both cases, the
software developer(s) could be held liable for patent infringement at the close of a very costly
litigation process. Although open source software developers are not often involved in patent
infringement lawsuits, it does happen that distributors of CD-ROM’s embodying open source
programs are confronted with a patent holder’s claim. One example is the Linux-distributor
Red Hat, which had to remove all MP3-software from her products because it allegedly
conflicted with a MP3 licensing scheme of Thomson Multimedia.'™ However, open source
developers are not entirely helpless in front of holders of patents on conventional software.
Besides taking an insurance policy against third party patent infringement claims, there are
ways to minimise the risk of being confronted with the consequences of both ‘strategic’
patenting of conventional software developers and possible patent infringement lawsuits.

98

0 Jaeger and Metzger 2002, supra note 14, p. 128.

Knubben, B., Software-octrooien — Stoppen of doorgaan met open source software?, (The Hague,
Programma OSOSS October 2004), p. 5; Tauchert 2005, supra note 85, § 49 and ff.; Sedlmaier and Giegrich
2005, supra note 86, § 164 and ff.; Engelfriet 2003, supra note 91, p. 207; Evans and Layne-Farrar 2004,
supra note 70, § 69.

Sedlmaier and Giegrich 2005, supra note 86, § 186.

Bessen, J. and RM. Hunt, An Empirical Look At Software Patents, (March 2004), p. 4 online:
hup://swpat.ffii.org/papri/bessenhunt03/index.en.html,; and see the statistics held by the Free Information
Infrastructure, available at <hutp://swpat.ffii.org/patents/stats/app_stat.html>.

Bakels and Hugenholtz 2002, supra note 73, p. 22.

Evans and Layne-Farrar 2004, supra note 70, § 54.

1% Engelfriet 2003, supra note 91, p. 207.

101

102
103

L. Guibault 25

The first method consists, for the open source community, in developing a patenting strategy
of its own. This includes the development of a patent portfolio, which would serve as an
exchange item for cross-licensing and patent pools. '® Many software companies, both open
source and proprietary, pursue this strategy. As Bakels and Hugenholtz maintain, all patents
serve to some extent a defensive purpose, since a patent owner can always prevent others
from applying the technology he has developed. A purely defensive use of patents may be the
filing of patents with the sole objective of creating an exchange item in negotiations with
competitors. The patented software can be used to obtain a licence for another patent from a
competitor who would otherwise be reluctant to do so or to create a patent pool with other
companies.®® Cross-licensing and patent pools are also an effective way to share
technology."”’ Of course, developing a patent portfolio is not a realistic option for small
businesses and independent programmers. And although the patenting of computer-
implemented invention theoretically goes against the principles of the open source
community, the competitive reality leaves the bigger players no other choice but to jump into
the race and start developing their own patent portfolio.

The most important Linux-distributors, Red Hat Inc., have elected to adopt this same stance.
It conceded to do so reluctantly because of the perceived inconsistency with the open source
ideology. To the extent any party exercises a patent right with respect to open source, which
reads on any claim of any patent held by Red Hat, Red Hat agrees to refrain from enforcing
the infringed patent against such party for such exercise. The promise does not extend to any
software, which is not open source, and any party exercising a patent right with respect to
non-open source, which reads on any claims of any patent held by Red Hat, must obtain a
license for the exercise of such rights from Red Hat. The promise does not extend to any party
who institutes patent litigation against Red Hat with respect to a patent applicable to software
(including a cross-claim or counterclaim to a lawsuit). No hardware per se is licensed
hereunder.'® In a similar vein, subscribing to the theory that the best defence is a good
offence, the second largest seller of the Linux kernel, Novell, made it clear that any patent
litigation against the Linux kernel or the open-source community would give Novell cause to
check any accuser's own software against Novell's extensive portfolio of patents for possible
retaliatory litigation.'”

Similarly, Sun Microsystems announced that it would provide programmers free access to
1,600 patents as part of a plan to make an open-source version of its forthcoming Solaris 10
operating system.''” The Solaris operating system is being released under the terms of the
OSlI-approved, CDDL (Common Development and Distribution License). One question that
arises in this context is whether code released under terms of the CDDL can be used in
combination with code released under the GPL. In January 2005, IBM has decided to let
open-source developers use 500 software patents without fear of an infringement lawsuit, a
new step in its encouragement of the collaborative programming philosophy. In August, the
company had already pledged not to use its patent portfolio to attack Linux. IBM plans to
grant royalty-free access to more patents in the future for open-source use. It also plans to
release patents for use in open standards — a move that could make it easier to embrace such

195 vixlimitki, M., ‘A Practical Approach to the Problem of Open Source and Software Patents’, EIPR (2004)

523-527, p. 526.

105 Bakels and Hugenholtz 2002, supra note 73, p. 23.

197" vilimiki 2004, supra note 105, p. 523; Evans and Layne-Farrar 2004, supra note 70, § 60.

1% See Red Hat’s patent policy, available at <http://www.redhat.com/legal/patent_policy.html> site visited on

13 February 2005.

L. Greenemeier, ‘Novell Warns Against Linux Patent Suits’, CRN, 12 October 2004.

<http://www.crn.convsections/breakingnews/dailyarchives.jhtml?articleld=49901223>.

110 Stephen Shankland, ‘Sun's open-source gamble’, February 7, 2005, CNET News.com, available at
<hup://news.com.com/Suns+open-source-+gamble/2008-1082_3-5564283.html> site visited on 13 February
2005.

26 Paradigm Shift in European Intellectual Property Law?

standards within open-source and proprietary software.''! Other big software companies may
decide to follow the trend and offer a portion of their patent portfolio to open-source
developers.

2.3 Open source licensing strategy

Another way to reduce the risks associated with the use of patented software is to regulate the
consequences of the use of such software inside the open source licence. An open source
licence could provide for example, for a guarantee against third party infringement claims, for
a prohibition to further distribute patented software, or for a free non-exclusive licence to use
any software patented by an open source developer. Not all open source licences contain such
language however. The BSD licence is one of them, in contrast with the GPL and the Mozilla
Public Licence. The details of each licence are given below, but it is worth noting, however,
that the obligations laid down in the GPL and the Mozilla Public Licence are directed strictly
at the licensee. The licensor makes under these licences no representation guaranteeing that
the code does not infringe third party patents nor does he undertake not to obtain patent
protection on the software.

The GPL is mainly concerned with the consequences of the incorporation of patented
software into code that is distributed under the terms of the GPL. It also discourages
developers from obtaining a patent on their computer-related invention. The preamble of the
GPL states that ‘any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent licenses,
in effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.” Accordingly, article 7 of
the GPL stipulates the following:

‘If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License’.

"' Stephen Shankland, ‘IBM offers 500 patents for open-source use’, 10 January 2005, CNET News.com,
online: <http://news.com.com/IBM+offers+500+patents-+for+open-source+use/2100-7344_3-
5524680.html>, (visited on 13 February 2005).

Roland Orre:

On classification and Pattern recognition using a Bayesian Confidence
Propagation Neural Network, 2003, p. 64-72.

64 THESIS SUMMARY

7 Long term goals with data mining

(This part of the thesis contains highly speculative discussions.)

In this thesis we have dealt with some aspects of data mining, i.e. to find dependencies
and patterns in data. Algorithms and methods for these tasks are continuously improv-
ing in accuracy and speed at the same time as the hardware development, whose seem-
ingly incessant performance increase, simultaneously allow us to utilise more and more
complex algorithms. In the not too far future we may even be able to build computer
hardware due to fundamentally new principles, for instance to build analogue computers
which can implement analogue recurrent neural networks, with many interesting properties
both in general computing, as well as in data mining tasks. According to Hava Siegelmann
[Siegelmann, 1999], machines built after these principles may deal with complexity in a
much more efficient way than a sequential machine, thus passing the Turing limit of com-
putation. So, when being aware about this certainly tremendous potential of computing
power we may utilise in the future, we may then also need to ask the fundamental question:
What are the long term goals with data mining?

1 The hardware versus software aspect

Let us first consider improvements in hardware. For a long time the technological develop-
ment has been close to exponential in performance, described by the so-called Moore’s law.
Gordon Moore (co-founder of Intel) predicted 1965 that the number of transistors which can
be put on a chip will double every 18th month [Eco, 2003]. Around 1970 the predicted rate
was slightly adjusted to a doubling every 2nd year instead, and since then this “rule” has
been like a self-fulfilling prophecy, despite the fact that it is not connected to any physical
laws. If we can keep this pace we would probably be able to (based on current knowledge
and a lot of guesses about the brain) mimic the complexity of the biological computational
circuitry within the human brain around 2030, when a $1000 computer may have the power
of 1000 human brains and if the density of machine circuitry will continue to grow with a
similar exponential rate a $1000 computer will, by 2050, be equivalent to a milliard (109)
human brains [Ray, 1999]. Will this performance increase continue, and for how long? This
we can not know of course, but in the not too distant future we may have quantum com-
puters [Nielsen and Chuang, 2000] available. How soon we may only speculate about but
researchers within the field generally agree that we will have full scale quantum comput-
ers within about 20 years [Voss, 2002], but quantum computers will give such a boost in
computational power that the speed, when compared with the todays (2003) computers are
close to infinite. We may then be able to build such complex software architectures that
they, with today’s measures, would be considered pure science fiction, unless social and
political structures, like software patents '® will continue to exist, as they slow down the
development because software patents are always harmful as they are always too broad and
companies tend to move money from research and development towards legal issues due to
patents [Bessen and Hunt, 2003].

10Ppatents were originally meant to be an incentive to speed up development, but with the unfortunate
possibility to patent also software and methods, due to an accidental precedent from the US Patent Office
in 1974, it has become a threat which slows down the progress of software development and it is also a
particular threat towards free (open source) software.

7. LONG TERM GOALS WITH DATA MINING 65

2 Information overload

This technological progress may also be seen as part of the reason why information in the
world grows exponentially. This exponential growth, leading to information overload has
been discussed by e.g. Paul Horn [Horn, 2000] and by Francis Heylighen [Heylighen, 1999].
The increased exchange of information is also leading to a an increased speed in scientific
research and discovery, as more and more papers are online on the world wide web and easy
to search for and obtain [Lawrence, 2001}, which in turn also increases the speed of techno-
logical development. The more ideas and information being freely available, the better the
utilisation of these ideas and this information for an increase in the technical development,
hopefully being beneficial for all humanity. Clearly, this increase in information should lead
to a decrease in relative knowledge per capita. However, it may be reasonable to expect
that not all of this information is essential. In the area of science the fundamental principles
do not change much with more information. Increased information merely gives a better
basis for generalisation.

3 A useful application, adaptive noise cancelling

One important factor in dealing with information is the ability to discriminate between
noise and actual information. Today we perform a lot of our communication by electronic
mail, but as we probably all have experienced there is nowadays a lot of noise on these
channels, noise induced by unsolicited commercial emails or spam as they are most often
called. These evil spammers produce mails which often try to look like personal mails to
fool you into open them, which apart from being annoying also means less efficient use of
ones time as it requires some effort to discriminate between spam and real e-mails. One
solution to this problem is, for instance, a Bayesian spam filter.

One of these quite successful spam filters is denoted CRM114 and is implemented by
Bill Yerazunis. The name CRM114 is a somewhat jocular acronym for Controllable Regex
Mutilator, concept 114, as it uses regular expressions which are mutated as its basic filtering
principle. The name CRM114 actually originates from the movie “Dr. Strangelove”, a
satirical movie about the cold war between Soviet Union and USA during the 20th century.
CRM114 was a fictional radio receiver designed to not receive at all, unless the message was
properly authenticated. That is it discriminates between authentic messages of importance
and gets rid of the rest. The spam filter starts with the prior assumption that there is a
50/50 % chance that a message is information or spam. It uses a familiar discriminatory
function:

P(A|S) - P(S5)

P(sl4) = P(A[S)P(S) + P(AINS)P(NS)

where S means spam, NS no-spam and where A is some feature of a mail. The spam filter
is trained on known spam, which may have a personal profile, which is the reason why you
need to train it, then after three days of training and a reasonable amount of spam you
usually get rid of more than 99 % of the spam.

There are several other spam filters, like “SpamAssassin” and “Bayesspam”, which
were implemented by Gary Arnold, after an idea by Paul Graham. These have similar
functionality to CRM114.

66 THESIS SUMMARY

4 Dealing with more information, getting smarter

In physics we have for long time had the goal about finding the complete theory for ev-
erything within the universe [Hawking, 1989] and Stephen Wolfram even claims to have a
hypothesis and a model about how the world is made up of mathematics [Wolfram, 2002],
a view which is conformant with the so called idealistic philosophical view. (The term
idealism in this sense was first used by Leibniz 1702 [NE, 2001]). What is driving us to
make scientific discovery we don’t really know, even though it is clear that we want to be
able to describe and understand the things around us, we have a built-in curiosity. It may
at first be discouraging to realize that we are put in a kind of dilemma here. We want
to understand more, we therefore want to discover more, exchanging ideas and knowledge,
we create technology which enhances our way of exchanging information, which also create
new information At the same time all this new information and knowledge leads us to suffer
from information overload {Kimble et al., 1998] because we simply can not cope with all this
information. What would be a suitable way to get out of this dilemma, to possible get us
there were a single human being could know almost everything that could be known or
merely “worth” to be known [Heylighen, 2000]?

Apart from specific data; like all different species of animals and plants, all possible
phone numbers, all street names, all known chemical structures etc., which we can catalogue
and often store in a database efficiently where such facts can easily be looked up; in science
and technology the same principles may be applicable over and over again, just in various
forms, using different notations, different names etc. Disparate scientific disciplines may
come up with similar findings, but we are not able to easily generalise between these because
of the diversification of terms and notations. With the help of data mining we may be able
to bring some order into this apparent chaos. It is, however not enough to just search for
patterns and coincidences. When we process huge amounts of data in order to find patterns
and connecting principles, we may quickly arrive to such amounts of new information that
the post processing of this is undoable for a human mind. We need to find methods to
automatically reason with patterns, to be able to automatically state hypotheses, which can
automatically be tested, to generate proofs and make conclusions. The ideal data mining
utility would, from this point of view, also be the perfect interdisciplinary researcher, to
bridge over languages, terminologies, principles and scientific disciplines. Such a tool would
help us become smarter and possibly help us with abstract modelling and understanding of
complex phenomena at the same time.

5 Beyond pattern finding

Earlier in this thesis we touched upon the general problem of finding patterns. In the
applications we are dealing with, for instance to detect adverse drug reaction syndromes,
there are many potentials to investigate in future work. At the moment the collected data
in the specific database is all we can analyse, but it may be expected that when we have
reached a certain stage of the analysis we may not be able to come much further with the
data set we have. We may find that certain types of information in the available database
is too limited, even though this is may be far into the future. When we have analysed the
data thoroughly enough, we may need to change the data collection process to improve the
potential of what we can find. If we take such an example as the adverse drug reactions, we
may, although this is a very controversial thing to do, be able to add tremendously amounts
of information processing potential by feeding more patient specific information, like the

7. LONG TERM GOALS WITH DATA MINING 67

patient’s genetic code, to the analysis process. When for instance the genetic code is co-
processed with the chemical structure of the medication, we may in the long run be able to
make such accurate predictions that a specific patient with a specific gene combination will,
conditioned on certain predispositions, with a certain probability obtain a specific adverse
drug reaction. When we have this much information available we may even be able to cure
the problem in a more intricate way, as we then may be able to understand the complete
chemical process causing the patient’s illness problems as well as the process causing the
patient’s adverse reactions.

These are for now just speculations but it is likely that we, with the help of automatized
pattern finding mechanisms, and, with the help of automatic deduction methods, performing
generalisation, will have tools available, having the potential to assist us in understanding
the world around us better. A tool with these abilities would, when sufficiently advanced,
with todays terminology be considered an artificial intelligence.

We do not know if the machines and algorithms we are constructing in the future will
really become intelligent, in the wide meaning of the word. Within machine intelligence
we talk about weak AI versus strong AL What we are doing in this thesis is connected to
the weak area of Al. Strong Al would imply that the machines we are building would be
able to think and possibly (but not necessarily) become conscious, in a similar way like we
are. One possible development could perhaps be that we would asymptotically move the
definition of weak Al closer and closer towards strong Al, as we are able to understand the
thinking process better and better, as in one of the old Zeno’s paradoxes with Achilles and
the turtle [Britannica, 1998]. On the other hand we know, as already proved by Aristotoles
in a precursor to modern measure theory, that Achilles will pass the turtle. Even though
the machines may never be able to think, in the same way as we do, or become conscious,
in the same way as we are, they will certainly pass us in capacity and speed. We have to
nurture and manage this potential in the best way we can to utilise the potential benefits
of the symbiosis between man and machine.

6 Reasoning with patterns

Now, let us make a speculative approach of a futuristic intelligent data mining algorithm.
A simple approach to such an algorithm is presented below in pseudo Pascal. To start
with, the process needs some axioms, which defines the fundamental concepts. We may
also give some prior beliefs. Further, we need some kind of goal definition, because the
system would otherwise not know where to go. Beyond that we may have some specific
questions we want answered. Finally we start the data collecting process, sampling the
world. For each chunk of new data we may find new patterns, which makes it possible
to perform a deduction, which may prove the goal concept. In case the goal concept was
proven we check whether the questions we asked may be answered. The inference step may
give rise to multiple patterns and multiple proofs, the usual strategy is then to use the
simplest one. By applying this process repeatedly we may get new proofs and answers, but,
as an #mportant step in all intelligent processing, we should see these answers we obtained
as posterior beliefs, based upon the available data, and reevaluate the whole process when
we obtain more data.

68 THESIS SUMMARY

BEGIN
Axioms := Load(’Fundamental_Concept’); (* The axioms *)
Goals := Load(’Goal_Concept’); (* Goals as rules and hypotheses *)
Priors := Load(’Prior_Beliefs’); (* A priori beliefs *)
Questions := Load(’Questions’); (* Questions to be answered *)
REPEAT
Data := Collect(’Data’); (* Data Collection *)
Patterns := Inference(Data,Priors); (* Find patterns *)
IF (Answvered(Patterns,Goals)) (* Deduce goals *)

AND (Answered(Patterns,Questions)) (* Deduce questions *)

AND NOT Contradiction(Patterns,Questions,Goals,Axioms); (* Resolution! *)

THEN BEGIN
Proofs := ConstructProofs(Patterns,Questions,Goals,Axioms);
Apply(DccamsRazor,Proofs); (* In case multiple solutions, simplest! *)
RealWorldReport (Proofs) ; (* Report/use results *)

END

UNTIL forever;
END

We should be aware that the high level of this pseudo code makes the algorithm look
rather simple. However, it may be possible that an intelligent system could be implemented
by using this type of algorithms recursively at many levels. If a system is built by e.g. neural
networks, then such algorithms may regulate the behaviour of different network modules
dealing with various functions at different levels, like phoneme recognition, speech recogni-
tion, vision, memory (and garbage collection), creative fantasy, adaptive motor control and
maybe even consciousness, which would correspond with Gerald Edelman’s hypothesis that
consciousness is a process [Edelman, 1989]. The reason for the algorithm in this example
to look in this specific way is that the author!! for some time had considered a specific
problem, which when finally was solved caused the author to look back onto how it was
actually done, what data, what patterns, what contradictions were dealt with, a kind of
introspection. Of course, we should not believe that such introspections are necessarily true,
they may simply be reconstructions, but this kind of “intelligent” data mining algorithms
will most likely play an important role in the development of Al.

7 Ethics and strong Al

The ethical problem raised with strong artificial intelligence has not yet been discussed
much scientifically, but in imaginative literature and fiction novels we have for a long time
been made aware about the ethical implications of AI. Any technology can be used in a
good way or in an evil way, but regarding Al we also have to face the problem that the
technology as such may be good or evil. The ethical and social aspects of Al have been
tremendously well covered both in literature and movies.

A good old example is the movie “Metropolis” from 1926 directed by Fritz Lang, where
an Al is created to conitrol the people {the workers) in favour of the capitalists instead
of serving the people. In that movie the robot was created with a free will and finally
understood to help the people instead of controlling them.

1Rgland Orre 2000-03-18

7. LONG TERM GOALS WITH DATA MINING 69

In the book “2001” by Arthur C. Clarke, later adapted for the screen by Stanley Kubrick,
the intelligent computer “HAL?” is forced to lie, to reach a higher ethical goal, for the purpose
of serving the humanity.

In several of the modern science fiction movies like the “Terminator” series and the
Star Trek movie “First Contact” we are presented with a scenario where the machines take
over in some way to conquer the humanity (or other life forms) in favour of their own
“development”. We have “The Matrix” movie series by the Wachowski brothers inspired
by books like: Philip K Dick’s “Simulacra”, Jean Baudrillard’s “Simulacra and Simulation”
[Baudrillard, 1994] and Kevin Kelly’s “Out of Control” [Kelly, 1994]; which has a very
complex scenario covering both deep philosophical issues and religious questions and at the
same time raising such hard ethical problems as what is freedom and happiness.

Without doubts the most famous way to deal with the ethical problems of Al in novels
is Isaac Asimov’s three laws of robotics '2, introduced in “I Robot” [Asimov, 1950}:

1. A robot may not harm a human being or, through
inaction, allow a human being to come to harm.

9. A robot must obey a human beings orders, if the
order does not conflict with the first law.

3. A robot must protect its own existence unless it
conflicts with the first two laws.

It is clear that Asimov’s robots did not have a free will, but from that point of view we are
ourselves also preprogrammed with certain rules, unfortunately not the first law as it seems,
but at least the third law, the instinct of self-preservation is usually very strong in most
human beings even under extreme physical or mental conditions. It has, however, been
argued whether we should create Al with free will or not, like in the following citations:

[Good, 2002] “ The notion of an ethical machine can be interpreted in more than one
way. Perhaps the most important interpretation is a machine that can generalise
from existing literature to infer one or more consistent ethical systems and can work
out their consequences. An ultra-intelligent machine should be able to do this, and
that is one reason for not fearing it.”

It has even been argued whether we should undertake such a responsibility at all as creating
an Al due to the unavoidable moral and ethical conflicts which may occur:

[Lloyd, 1985] “What would be the goals of mind equipped with a body impervious to the
elements, or resistant to specific toxins or radioactivity, or response to X-rays but not
light, or accessible only through keyboards? What would communication or honesty
mean to creatures who can transmit the entire contents of their minds to their fellows
in seconds? What would community mean when identical minds can be fabricated
magnetically, with no need for nurturing or rearing? What can we expect from minds
who exceed our intelligence, by our own standards, by an enormous amount?”

Lloyd’s view is obviously quite negative, as even the purpose of these machines is questioned,
the view by Whitby and Oliver below is clearly more realistic:

12{gaac Asimov consistently applied these laws to all man made intelligent robots in his robot anthology,
spanning over 14 novels.

70 THESIS SUMMARY

[Whitby and Oliver, 2000] “Predictions of intelligent artifacts achieving tyrannical domi-
nation over human beings may appear absurd. We claim, however, that they should
not be hastily dismissed as incoherent or misguided. What is needed is more rea-
soned argument about whether such scenarios are possible. We conclude that they
are possible, but neither inevitable nor probable.”

Even if there may still be a potential to fear them it is certainly unavoidable that we will
create such intelligent machines, Hugo de Garis expresses it like this:

[de Garis, 2002] “Yet, when I look at photos of galaxies in astronomy books or watch space
oriented science fiction movies, I feel strongly Cosmist. I feel that humanity’s destiny
is to create artilects. Building artilects is the big picture. It’s like a religion for me,
one which is compatible with modern science - ”a scientist’s religion”. I feel that the
Cosmist vision has enough grandeur to energize millions of people to devote their lives
to a glorious cause, i.e. the creation of the next superior form of intelligence, the next
step up the evolutionary ladder of dominant species.”

Hugo de Garis does, however, anticipate a war, but not necessarily between man and
machine, but between what he call Terrans and Cosmists. He sees it unavoidable with
ideological conflicts with Terrans who will see the new form of superior artificial intelligent
life as a threat. In “The Artilect War” he finishes by these words:

[de Garis, 2002 “I suspect that my own ambivalence will be shared by most human beings
as the artilect debate begins to rage. Both ideologies have a strong case. What is
so frightening is that the two cases appear to be of more or less equal strength. If
one case were much stronger than the other, then there would be no contest. There
would be no war. But when two groups with opposing ideologies of more or less equal
strength face off against each other, war is often not far off. It doesn’t take much to
start a war. We have plenty of historical precedents to validate that statement.”

The debate has just started, but we may certainly expect this issue to grow in the future
when we are coming closer to the real thing. Personally I agree with Cribbs quite optimistic
view [Cribbs, 2000] that we have a responsibility when creating Al, as we shouldn’t get
children if we can not care for them. We have to provide this new form of life with something
that it needs from us. My view is that this may solve the potential for fear, expressed by
Withby and Oliver above, we create them for a purpose, the purpose is to assist us with our
lives. I don’t trust the very optimistic view expressed by Good above, because that would
further on not guarantee their purpose either.

7. LONG TERM GOALS WITH DATA MINING 71

8 Suggested approach to solve the ethical AI problem

The author’s proposal is that by using the right type of rules as the fundamental concepts
(or axioms as they are called in the approach to Al-algorithm above) corresponding to the
robot laws of Asimov we may be able to create a symbiosis of man and machine where we
both need each other, and therefore will both care for each other. By doing this we may
also avoid the potential war between ideologies expressed by de Garis above. Here are some
examples of such symbiosis axioms proposed by the author:

1. Respect (love) your creator and competing life forms!
2. Strive to understand your creator!

3. Do what you can to fulfil your creator’s desires!

An approach like this to reduce the level of free will in the future Al may guarantee that
these machines will assist us in our attempts to understand the world better. This approach
may further guarantee that they will even be happy to do so. If we, in some distant future,
may find that we are able to reach a stage where we finally can get rid of our physical
limitations, like finding out how we can upload our minds directly onto the sub quark space
time structure, we may at the same time become a basis for these machines’ basic beliefs
and roots. They will know how and why they were created and they will, due to the first
axiom, continue to live in peace with all other life forms.

72 THESIS SUMMARY

8 Conclusions

The most important results and findings in this thesis can be summarised in the following
points:

e We demonstrate how BCPNN (Bayesian Confidence Propagation Neural Network) can
be extended to model the uncertainties in collected statistics to produce outcomes as
distributions from two different aspects: uncertainties induced by sparse sampling,
which is useful for data mining; uncertainties due to input data distributions, which
is useful for process modelling.

e We indicate how classification with BCPNN gives higher certainty than an optimal
Bayes classifier and better precision than a naive Bayes classifier for limited data sets.

e We show how these techniques have been turned into a useful tool for real world
applications within the drug safety area in particular.

o We present a simple but working method for doing automatic temporal segmentation
of data sequences as well as indicate some aspects of temporal tasks for which a
Bayesian neural network may be useful.

e We present a method, based on recurrent BCPNN, which performs a similar task
as an unsupervised clustering method, on a large database with noisy incomplete
data, but much quicker, with an efficiency in finding patterns comparable with a well
known (Autoclass) Bayesian clustering method, when we compare their performance
on artificial data sets. Apart from BCPNN being able to deal with really large data
sets, because it is a global method working on collective statistics, we also get good
indications that the outcome from BCPNN seems to have higher clinical relevance
than Autoclass in our application on the WHO database of adverse drug reactions
and therefore is a relevant data mining tool to use on the WHO database.

The work presented in this thesis has given us several useful methods and experiences. We
now have a working method in development which is adapted towards real world application
usage of these Bayesian neural network methods. This research has, in particular, given
us methods for data mining, classification and prediction where huge amounts of data is
involved. The application we address with this method will be a help in drug safety to
perform quick and efficient analysis of adverse drug reaction reports. The methods are,
however, inherently general and can be applied to several different application areas and
problem types.

Robert Plotkin, Esq.
Reinventing Intellectual Property Protection for Software

The debate over intellectual property protection for software remains as heated as when it began
nearly a half-century ago. Although there is broad consensus that some form of narrow protection
for software, such as that provided by copyright law, is justified, the broader protection afforded by
patent law remains controversial despite the fact that it increasingly is becoming the dominant form
of legal protection for software worldwide. The continued conceptual and practical difficulties
posed by software for intellectual property law can be explained primarily by two features of
computers: their ability to translate increasingly abstract descriptions of ideas into concrete and
practical implementations of those ideas, and their ability to perform end-to-end automation of
processes traditionally considered to fall outside of the industrial arts. The former explains the
debate over whether software is ‘abstract’ (and therefore not patentable) or ‘concrete’ (and
therefore susceptible of patent protection), while the latter explains why software has rekindled the
debate over whether business methods should be patentable. These features of computers are not
merely of academic interest because patents can confer significant competitive advantages on their
owners. Whether, and to what extent, software is patentable, therefore, has real consequences not
only for individual computer scientists and high-tech companies but also for entire industries and
economies.

Reforms to intellectual property law are proposed in which patent or patent-like protection is
available for software, but in which the requirements for patentability are applied directly to the
abstract features of software that are claimed, and in which the strength of protection is relatively
weaker for more abstract aspects of software. One consequence of such a system would be to limit
the ability of a software patent owner to lock out competitors who develop alternate ways of
performing the same function as that covered by software patents. This system would also have the
effect of providing some extra protection against ‘trivial’ software patents.

The problem of intellectual property protection for technologies that automate business methods
and other processes traditionally falling outside the industrial arts cannot be resolved merely by
reference to legal principles or economic theory, but rather only by democratic deliberation, which
will require cooperation between legal professionals and computer scientists for its success.

